BV functions in abstract Wiener spaces

被引:47
作者
Ambrosio, Luigi [2 ]
Miranda, Michele, Jr. [3 ]
Maniglia, Stefania [1 ]
Pallara, Diego [1 ]
机构
[1] Univ Salento, Dipartimento Matemat Ennio De Giorgi, I-73100 Lecce, Italy
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[3] Univ Ferrara, Dipartimento Matemat, I-44100 Ferrara, Italy
关键词
BV functions; Wiener space; Ornstein-Uhlenbeck semigroup; INEQUALITY;
D O I
10.1016/j.jfa.2009.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Functions of bounded variation in an abstract Wiener space, i.e., an infinite-dimensional Banach space endowed with a Gaussian measure and a related differential structure, have been introduced by M. Fukushima and M. Hino using Dirichlet forms, and their properties have been studied with tools from analysis and stochastics. In this paper we reformulate, in an integral-geometric vein and with purely analytical tools, the definition and the main properties of BV functions, and investigate further properties. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:785 / 813
页数:29
相关论文
共 25 条
  • [1] Ambrosio L., 2000, Oxford Mathematical Monographs
  • [2] Ambrosio L., UNPUB
  • [3] AMBROSIO L, EVOLUTION E IN PRESS
  • [4] [Anonymous], PROBABILITY BANACH S
  • [5] [Anonymous], 2000, Oxford Mathematical Monographs
  • [6] [Anonymous], 1992, LECT NOTES MEASURE T
  • [7] [Anonymous], 1986, Probability in Banach spaces-stable and infinitely divisible distributions
  • [8] [Anonymous], 2001, MATH SURVEYS MONOGR
  • [9] [Anonymous], LECT NOTES MATH
  • [10] [Anonymous], 2002, LONDON MATH SOC LECT