Endocytic recycling in yeast is regulated by putative phospholipid translocases and the Ypt31p/32p-Rcy1p pathway

被引:133
作者
Furuta, Nobumichi [1 ]
Fujimura-Kamada, Konomi [1 ]
Saito, Koji [1 ]
Yamamoto, Takaharu [1 ]
Tanaka, Kazuma [1 ]
机构
[1] Hokkaido Univ, Sch Med, Div Mol Interact, Inst Med Genet, Sapporo, Hokkaido 0600815, Japan
关键词
D O I
10.1091/mbc.E06-05-0461
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Phospholipid translocases (PLTs) have been implicated in the generation of phospholipid asymmetry in membrane bilayers. In budding yeast, putative PLTs are encoded by the DRS2 gene family of type 4 P-type ATPases. The homologous proteins Cdc50p, Lem3p, and Crf1p are potential noncatalytic subunits of Drs2p, Dnf1p and Dnf2p, and Dnf3p, respectively; these putative heteromeric PLTs share an essential function for cell growth. We constructed temperature-sensitive mutants of CDC50 in the lem3 Delta crf1 Delta background (cdc50-ts mutants). Screening for multicopy suppressors of cdc50-ts identified YPT31/32, two genes that encode Rab family small GTPases that are involved in both the exocytic and endocytic recycling pathways. The cdc50-ts mutants did not exhibit major defects in the exocytic pathways, but they did exhibit those in endocytic recycling; large membranous structures containing the vesicle-soluble N-ethylmaleimide-sensitive factor attachment protein receptor Snc1p intracellularly accumulated in these mutants. Genetic results suggested that the YPT31/32 effector RCY1 and CDC50 function in the same signaling pathway, and simultaneous overexpression of CDC50, DRS2, and GFP-SNC1 restored growth as well as the plasma membrane localization of GFP-Snc1p in the rcy1 Delta mutant. In addition, Rcy1p coimmunoprecipitated with Cdc50p-Drs2p. We propose that the Ypt31p/32p-Rcy1p pathway regulates putative phospholipid translocases to promote formation of vesicles destined for the trans-Golgi network from early endosomes.
引用
收藏
页码:295 / 312
页数:18
相关论文
共 75 条
[1]   Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles [J].
Alder-Baerens, N ;
Lisman, Q ;
Luong, L ;
Pomorski, T ;
Holthuis, JCM .
MOLECULAR BIOLOGY OF THE CELL, 2006, 17 (04) :1632-1642
[2]   High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A [J].
Ayscough, KR ;
Stryker, J ;
Pokala, N ;
Sanders, M ;
Crews, P ;
Drubin, DG .
JOURNAL OF CELL BIOLOGY, 1997, 137 (02) :399-416
[3]   SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box [J].
Bai, C ;
Sen, P ;
Hofmann, K ;
Ma, L ;
Goebl, M ;
Harper, JW ;
Elledge, SJ .
CELL, 1996, 86 (02) :263-274
[4]   Two GTPase isoforms, ypt31p and ypt32p, are essential for Golgi function in yeast [J].
Benli, M ;
Doring, F ;
Robinson, DG ;
Yang, XP ;
Gallwitz, D .
EMBO JOURNAL, 1996, 15 (23) :6460-6475
[5]   A selective transport route from golgi to late endosomes that requires the yeast GGA proteins [J].
Black, MW ;
Pelham, HRB .
JOURNAL OF CELL BIOLOGY, 2000, 151 (03) :587-600
[6]   SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals [J].
Brickner, JH ;
Fuller, RS .
JOURNAL OF CELL BIOLOGY, 1997, 139 (01) :23-36
[7]   Mutants in trs120 disrupt traffic from the early endosome to the late Golgi [J].
Cai, HQ ;
Zhang, YY ;
Pypaert, M ;
Walker, L ;
Ferro-Novick, S .
JOURNAL OF CELL BIOLOGY, 2005, 171 (05) :823-833
[8]   The complete inventory of the yeast Saccharomyces cerevisiae P-type transport ATPases [J].
Catty, P ;
dExaerde, AD ;
Goffeau, A .
FEBS LETTERS, 1997, 409 (03) :325-332
[9]   THE CYTOPLASMIC TAIL DOMAIN OF THE VACUOLAR PROTEIN SORTING RECEPTOR VPS1OP AND A SUBSET OF VPS GENE-PRODUCTS REGULATE RECEPTOR STABILITY, FUNCTION, AND LOCALIZATION [J].
CEREGHINO, JL ;
MARCUSSON, EG ;
EMR, SD .
MOLECULAR BIOLOGY OF THE CELL, 1995, 6 (09) :1089-1102
[10]  
Chen CY, 1998, GENETICS, V150, P577