On the K-generalized Fibonacci matrix Q(k)(*)

被引:26
作者
Lee, GY
Lee, SG
Shin, HG
机构
[1] SUNGKYUNKWAN UNIV, DEPT MATH, SUWON 440746, SOUTH KOREA
[2] WOOSUK UNIV, DEPT MATH EDUC, CHON BUK 565820, SOUTH KOREA
基金
新加坡国家研究基金会;
关键词
D O I
10.1016/0024-3795(95)00553-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The k-generalized Fibonacci sequence {g(n)((k))} is defined as follows: g(1)((k)) =...= g(k-2)((k)) = 0, g(k-1)((k)) = g(k)((k)) = 1, and for n > k greater than or equal to 2, g(n)((k)) = g(n-1)((k)) + g(n-2)((k)) +...+ g(n-k)((k)). We consider the relationship between g(n)((k)) and 1-factors of a bipartite graph and the eigenvalues of k-generalized Fibonacci matrix Q(k) for k greater than or equal to 2. We give some interesting examples in combinatorics and probability with respect to the k-generalized Fibonacci sequence. (C) Elsevier Science Inc., 1997
引用
收藏
页码:73 / 88
页数:16
相关论文
共 5 条
[1]   CONVEX POLYHEDRA OF DOUBLY STOCHASTIC MATRICES .1. APPLICATIONS OF PERMANENT FUNCTION [J].
BRUALDI, RA ;
GIBSON, PM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 22 (02) :194-230
[2]  
Honsberger R., 1985, MATH GEMS 3
[3]  
LEE GY, 1995, FIBONACCI QUART, V33, P273
[4]  
Marshall A. W., 1979, INEQUALITIES THEORY
[5]  
Miles EP., 1960, Amer. Math. Monthly, V67, P745, DOI [10.1080/00029890.1960.11989593, DOI 10.1080/00029890.1960.11989593]