An Object Detection Algorithm for UAV Reconnaissance Image Based on Deep Convolution Network

被引:2
作者
Guo, Xinping [1 ]
Li, Xiangbin [1 ]
Pan, Qiufeng [1 ]
Yue, Peng [1 ]
Wang, Jiaxing [1 ]
机构
[1] Beijing Aerosp Unmanned Vehicles Syst Engn Res In, Res Lab Command & Control & Syst Simulat Technol, Beijing, Peoples R China
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SENSING AND IMAGING, 2018 | 2019年 / 606卷
关键词
Deep learning; Convolution network; Object detection; Adaptive division; UAV;
D O I
10.1007/978-3-030-30825-4_5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, the UAV technology has developed rapidly and played an important role in many fields, especially in intelligence, reconnaissance, and monitoring. Object detection can provide accurate target location and target category for reconnaissance missions, providing detailed command information for commanders. However, the current object detection algorithm based on deep convolution network does not work well on detection for small objects and so cannot be applied to small objects in the reconnaissance image of UAV. In this paper, an object detection algorithm for UAV reconnaissance image based on deep convolution network is proposed. The image is adaptively divided according to the UAV flight parameters and the payload parameters before sent into the network. Through this way, small objects can be located and classified in a high accuracy of location and classification. This method can detect objects with small size, multiple quantities, and multiple categories on UAV.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 10 条
  • [1] Speeded-Up Robust Features (SURF)
    Bay, Herbert
    Ess, Andreas
    Tuytelaars, Tinne
    Van Gool, Luc
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) : 346 - 359
  • [2] Histograms of oriented gradients for human detection
    Dalal, N
    Triggs, B
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 886 - 893
  • [3] Fast R-CNN
    Girshick, Ross
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1440 - 1448
  • [4] Rich feature hierarchies for accurate object detection and semantic segmentation
    Girshick, Ross
    Donahue, Jeff
    Darrell, Trevor
    Malik, Jitendra
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 580 - 587
  • [5] SSD: Single Shot MultiBox Detector
    Liu, Wei
    Anguelov, Dragomir
    Erhan, Dumitru
    Szegedy, Christian
    Reed, Scott
    Fu, Cheng-Yang
    Berg, Alexander C.
    [J]. COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 : 21 - 37
  • [6] Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    Ojala, T
    Pietikäinen, M
    Mäenpää, T
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (07) : 971 - 987
  • [7] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
    Ren, Shaoqing
    He, Kaiming
    Girshick, Ross
    Sun, Jian
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) : 1137 - 1149
  • [8] A SURVEY OF DECISION TREE CLASSIFIER METHODOLOGY
    SAFAVIAN, SR
    LANDGREBE, D
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (03): : 660 - 674
  • [9] Least squares support vector machine classifiers
    Suykens, JAK
    Vandewalle, J
    [J]. NEURAL PROCESSING LETTERS, 1999, 9 (03) : 293 - 300
  • [10] Selective Search for Object Recognition
    Uijlings, J. R. R.
    van de Sande, K. E. A.
    Gevers, T.
    Smeulders, A. W. M.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 104 (02) : 154 - 171