Almost ff-universality Implies Q-universality

被引:5
作者
Koubek, V. [1 ,2 ]
Sichler, J. [3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Theoret Comp Sci & Math Log, Prague 11800 1, Czech Republic
[2] Charles Univ Prague, Fac Math & Phys, Inst Theoret Comp Sci, Prague 11800 1, Czech Republic
[3] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quasivariety; Q-Universality; Almost full embedding; Almost ff-alg-universality; QUASIVARIETIES; VARIETIES; LATTICE;
D O I
10.1007/s10485-007-9122-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A concrete category Q is finite-to-finite (algebraically) almost universal if the category of graphs and graph homomorphisms can be embedded into Q in such a way that finite Q-objects are assigned to finite graphs and non-constant Q-morphisms between any Q-objects assigned to graphs are exactly those arising from graph homomorphisms. A quasivariety Q of algebraic systems of a finite similarity type is Q-universal if the lattice of all subquasivarieties of any quasivariety R of algebraic systems of a finite similarity type is isomorphic to a quotient lattice of a sublattice of the subquasivariety lattice of Q. This paper shows that any finite-to-finite (algebraically) almost universal quasivariety Q of a finite type is Q-universal.
引用
收藏
页码:419 / 434
页数:16
相关论文
共 24 条
[1]  
Adamek J., 1990, ABSTRACT CONCRETE CA
[2]   Open questions related to the problem of Birkhoff and Maltsev [J].
Adams M.E. ;
Adaricheva K.V. ;
Dziobiak W. ;
Kravchenko A.V. .
Studia Logica, 2004, 78 (1-2) :357-378
[3]   Endomorphisms of monadic Boolean algebras [J].
Adams, M. E. ;
Dziobiak, W. .
ALGEBRA UNIVERSALIS, 2007, 57 (02) :131-142
[4]   Q-universal varieties of bounded lattices [J].
Adams, ME ;
Dziobiak, W .
ALGEBRA UNIVERSALIS, 2002, 48 (03) :333-356
[5]   Finite-to-finite universal quasivarieties are Q-universal [J].
Adams, ME ;
Dziobiak, W .
ALGEBRA UNIVERSALIS, 2001, 46 (1-2) :253-283
[6]   Q-UNIVERSAL QUASIVARIETIES OF ALGEBRAS [J].
ADAMS, ME ;
DZIOBIAK, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (04) :1053-1059
[7]  
[Anonymous], 1964, Monatsh. Math, DOI DOI 10.1007/BF01298508
[8]  
Demlová M, 2005, COMMENT MATH UNIV CA, V46, P257
[9]   THE SUBVARIETY LATTICE OF THE VARIETY OF DISTRIBUTIVE DOUBLE P-ALGEBRAS [J].
DZIOBIAK, W .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1985, 31 (03) :377-387
[10]   ON LATTICE IDENTITIES SATISFIED IN SUBQUASIVARIETY LATTICES OF VARIETIES OF MODULAR LATTICES [J].
DZIOBIAK, W .
ALGEBRA UNIVERSALIS, 1986, 22 (2-3) :205-214