Experimental Analysis of Diurnal Variations in Humic-Like Fluorescent Dissolved Organic Matter in Surface Seawater

被引:9
作者
Omori, Yuko [1 ]
Saeki, Akira [2 ]
Wada, Shigeki [3 ]
Inagaki, Yuji [4 ]
Hama, Takeo [1 ,5 ]
机构
[1] Univ Tsukuba, Fac Life & Environm Sci, Tsukuba, Ibaraki, Japan
[2] Univ Tsukuba, Grad Sch Life & Environm Sci, Tsukuba, Ibaraki, Japan
[3] Univ Tsukuba, Shimoda Marine Res Ctr, Shimoda, Japan
[4] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki, Japan
[5] Dokkyo Univ, Fac Econ, Soka, Japan
基金
日本学术振兴会;
关键词
fluorescent dissolved organic matter; PARAFAC; microbial production; photobleaching; surface seawater; CARBONYL-COMPOUNDS; MARINE; DEGRADATION; PACIFIC; WATERS; ENVIRONMENTS; OCEAN; TERRESTRIAL; REACTIVITY; DOM;
D O I
10.3389/fmars.2020.589064
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Humic-like fluorescent dissolved organic matter (FDOM) has been widely used as tracers for bio-refractory dissolved organic matter (RDOM) to understand its dynamics in the oceans. Vertical distributions of humic-like FDOM are controlled by microbial production in the ocean interiors and photobleaching in surface layers. Although humic-like FDOM is expected to be actively produced in surface layers with high bacterial activity, its production in surface seawater is not well understood. To examine the diurnal variations in humic-like FDOM due to microbial production and photobleaching in surface seawater, we conducted seven experiments from night to day using surface seawater in the subtropical Pacific and coastal regions. Parallel factor analysis (PARAFAC) determined that FDOM in the incubated seawater was composed of three components: two types of humic-like FDOM and a protein-like FDOM. The fluorescence intensity of humic-like FDOM increased to 104.0 +/- 2.5% of the initial intensity during the night and decreased to 101.2 +/- 2.5% under sunlight exposure during the day. Conversely, its intensity significantly increased to 114.0 +/- 2.7% under dark conditions during the day. The turnover rates of humic-like FDOM by the increase and decrease in its intensity were estimated to be 0.14 and 0.11 day(-1), respectively. These comparable turnover rates indicated that the production and photobleaching of humic-like FDOM were almost in equilibrium in the surface layer, with a low level of humic-like FDOM. Linear correlations between the intensity of humic-like FDOM and concentrations of dissolved oxygen (DO) in all experiments under dark conditions indicated that humic-like FDOM were produced as the by-products of microbial respiration processes in the surface seawater. Using global bacterial respiration rates, the net production rate of humic-like FDOM in the global photic layer was estimated as 4.2-5.5 x 10(17) R.U. year(-1), contributing to 75% of its production in the entire ocean.
引用
收藏
页数:13
相关论文
共 64 条
[1]  
[Anonymous], 2018, R LANG ENV STAT COMP
[2]   Production and degradation of fluorescent dissolved organic matter derived from bacteria [J].
Arai, Ken ;
Wada, Shigeki ;
Shimotori, Koichi ;
Omori, Yuko ;
Hama, Takeo .
JOURNAL OF OCEANOGRAPHY, 2018, 74 (01) :39-52
[3]   C-14 ACTIVITY OF DISSOLVED ORGANIC-CARBON FRACTIONS IN THE NORTH-CENTRAL PACIFIC AND SARGASSO SEA [J].
BAUER, JE ;
WILLIAMS, PM ;
DRUFFEL, ERM .
NATURE, 1992, 357 (6380) :667-670
[4]  
Benner R., 2011, SCI 80, P46
[5]   The Size-Reactivity Continuum of Major Bioelements in the Ocean [J].
Benner, Ronald ;
Amon, Rainer M. W. .
ANNUAL REVIEW OF MARINE SCIENCE, VOL 7, 2015, 7 :185-205
[6]   Master recyclers: features and functions of bacteria associated with phytoplankton blooms [J].
Buchan, Alison ;
LeCleir, Gary R. ;
Gulvik, Christopher A. ;
Gonzalez, Jose M. .
NATURE REVIEWS MICROBIOLOGY, 2014, 12 (10) :686-698
[7]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[8]  
Carlson CA, 2015, BIOGEOCHEMISTRY OF MARINE DISSOLVED ORGANIC MATTER, 2ND EDITION, P65, DOI 10.1016/B978-0-12-405940-5.00003-0
[9]   Turnover time of fluorescent dissolved organic matter in the dark global ocean [J].
Catala, Teresa S. ;
Reche, Isabel ;
Fuentes-Lema, Antonio ;
Romera-Castillo, Cristina ;
Nieto-Cid, Mar ;
Ortega-Retuerta, Eva ;
Calvo, Eva ;
Alvarez, Marta ;
Marrase, Celia ;
Stedmon, Colin A. ;
Anton Alvarez-Salgado, X. .
NATURE COMMUNICATIONS, 2015, 6
[10]   Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy [J].
Coble, PG .
MARINE CHEMISTRY, 1996, 51 (04) :325-346