UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking

被引:23
作者
Sammani, A. [1 ]
Jansen, M. [2 ]
Linschoten, M. [1 ]
Bagheri, A. [1 ,3 ]
de Jonge, N. [1 ]
Kirkels, H. [1 ]
van Laake, L. W. [1 ]
Vink, A. [4 ]
van Tintelen, J. P. [2 ]
Dooijes, D. [2 ]
te Riele, A. S. J. M. [1 ]
Harakalova, M. [1 ,4 ]
Baas, A. F. [2 ]
Asselbergs, F. W. [1 ,5 ,6 ,7 ]
机构
[1] Univ Utrecht, Univ Med Ctr Utrecht, Dept Cardiol, Div Heart & Lungs, Utrecht, Netherlands
[2] Univ Utrecht, Dept Genet, Div Labs Pharm & Biomed Genet, Univ Med Ctr Utrecht, Utrecht, Netherlands
[3] Univ Utrecht, Dept Methodol & Stat, Fac Social Sci, Utrecht, Netherlands
[4] Univ Utrecht, Dept Pathol, Div Pathol, Univ Med Ctr Utrecht, Utrecht, Netherlands
[5] UCL, Fac Populat Hlth Sci, Inst Cardiovasc Sci, London, England
[6] UCL, Hlth Data Res UK London, London, England
[7] UCL, Inst Hlth Informat, London, England
基金
欧盟地平线“2020”;
关键词
Big data analytics; Biobanking; Cardiomyopathy; Electronic health record; Machine learning; Research data platform; HEART-FAILURE; CLASSIFICATION; CARDIOLOGY; STATEMENT; REGISTRY; SOCIETY;
D O I
10.1007/s12471-019-1288-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction Despite major advances in our understanding of genetic cardiomyopathies, they remain the leading cause of premature sudden cardiac death and end-stage heart failure in persons under the age of 60 years. Integrated research databases based on a large number of patients may provide a scaffold for future research. Using routine electronic health records and standardised biobanking, big data analysis on a larger number of patients and investigations are possible. In this article, we describe the UNRAVEL research data platform embedded in routine practice to facilitate research in genetic cardiomyopathies. Design Eligible participants with proven or suspected cardiac disease and their relatives are asked for permission to use their data and to draw blood for biobanking. Routinely collected clinical data are included in a research database by weekly extraction. A text-mining tool has been developed to enrich UNRAVEL with unstructured data in clinical notes. Preliminary results Thus far, 828 individuals with a median age of 57 years have been included, 58% of whom are male. All data are captured in a temporal sequence amounting to a total of 18,565 electrocardiograms, 3619 echocardiograms, data from over 20,000 radiological examinations and 650,000 individual laboratory measurements. Conclusion Integration of routine electronic health care in a research data platform allows efficient data collection, including all investigations in chronological sequence. Trials embedded in the electronic health record are now possible, providing cost-effective ways to answer clinical questions. We explicitly welcome national and international collaboration and have provided our protocols and other materials on www.unravelrdp.nl.
引用
收藏
页码:426 / 434
页数:9
相关论文
共 30 条
  • [1] UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking
    A. Sammani
    M. Jansen
    M. Linschoten
    A. Bagheri
    N. de Jonge
    H. Kirkels
    L. W. van Laake
    A. Vink
    J. P. van Tintelen
    D. Dooijes
    A. S. J. M. te Riele
    M. Harakalova
    A. F. Baas
    F. W. Asselbergs
    Netherlands Heart Journal, 2019, 27 : 426 - 434
  • [2] Utilizing Big Data analytics and electronic health record data in HIV prevention, treatment, and care research: a literature review
    Qiao, Shan
    Li, Xiaoming
    Olatosi, Bankole
    Young, Sean D.
    AIDS CARE-PSYCHOLOGICAL AND SOCIO-MEDICAL ASPECTS OF AIDS/HIV, 2024, 36 (05): : 583 - 603
  • [3] Optimizing the Electronic Health Records Through Big Data Analytics: A Knowledge-Based View
    Zhang, Caifeng
    Ma, Rui
    Sun, Shiwei
    Li, Yujie
    Wang, Yichuan
    Yan, Zhijun
    IEEE ACCESS, 2019, 7 : 136223 - 136231
  • [4] Leveraging Big Data and Electronic Health Records to Enhance Novel Approaches to Acute Kidney Injury Research and Care
    Sutherland, Scott M.
    Goldstein, Stuart L.
    Bagshaw, Sean M.
    BLOOD PURIFICATION, 2017, 44 (01) : 68 - 76
  • [5] The Analytic Information Warehouse (AIW): A platform for analytics using electronic health record data
    Post, Andrew R.
    Kurc, Tahsin
    Cholleti, Sharath
    Gao, Jingjing
    Lin, Xia
    Bornstein, William
    Cantrell, Dedra
    Levine, David
    Hohmann, Sam
    Saltz, Joel H.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2013, 46 (03) : 410 - 424
  • [6] Construction and application of nasopharyngeal carcinoma-specific big data platform based on electronic health records
    Chen, Ze-Kai
    Wang, Xiao-Qing
    Xiao, Lin -Lin
    Sun, Jian-Da
    Mao, Meng -Yuan
    Zhang, Han -Bin
    Guan, Jian
    AMERICAN JOURNAL OF OTOLARYNGOLOGY, 2024, 45 (03)
  • [7] Operationalizing Healthcare Big Data in the Electronic Health Records using a Heatmap Visualization Technique
    Roosan, Don
    Karim, Mazharul
    Chok, Jay
    Roosan, Moom R.
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 5: HEALTHINF, 2020, : 361 - 368
  • [8] Big data from electronic health records for early and late translational cardiovascular research: challenges and potential
    Hemingway, Harry
    Asselbergs, Folkert W.
    Danesh, John
    Dobson, Richard
    Maniadakis, Nikolaos
    Maggioni, Aldo
    van Thiel, Ghislaine J. M.
    Cronin, Maureen
    Brobert, Gunnar
    Vardas, Panos
    Anker, Stefan D.
    Grobbee, Diederick E.
    Denaxas, Spiros
    EUROPEAN HEART JOURNAL, 2018, 39 (16) : 1481 - +
  • [9] The Cardiovascular Health in Ambulatory Care Research Team (CANHEART) Using Big Data to Measure and Improve Cardiovascular Health and Healthcare Services
    Tu, Jack V.
    Chu, Anna
    Donovan, Linda R.
    Ko, Dennis T.
    Booth, Gillian L.
    Tu, Karen
    Maclagan, Laura C.
    Guo, Helen
    Austin, Peter C.
    Hogg, William
    Kapral, Moira K.
    Wijeysundera, Harindra C.
    Atzema, Clare L.
    Gershon, Andrea S.
    Alter, David A.
    Lee, Douglas S.
    Jackevicius, Cynthia A.
    Bhatia, R. Sacha
    Udell, Jacob A.
    Rezai, Mohammad R.
    Stukel, Therese A.
    CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2015, 8 (02): : 204 - +
  • [10] An Automated Detection System of Drug-Drug Interactions from Electronic Patient Records Using Big Data Analytics
    Bouzille, Guillaume
    Morival, Camille
    Westerlynck, Richard
    Lemordant, Pierre
    Chazard, Emmanuel
    Lecorre, Pascal
    Busnel, Yann
    Cuggia, Marc
    MEDINFO 2019: HEALTH AND WELLBEING E-NETWORKS FOR ALL, 2019, 264 : 45 - 49