Non-integrability of ABC flow

被引:32
作者
Maciejewski, A
Przybylska, M
机构
[1] Univ Zielona Gora, Inst Astron, PL-65265 Zielona Gora, Poland
[2] Nicholas Copernicus Univ, Torun Ctr Astron, PL-87100 Torun, Poland
关键词
ABC flow; Ziglin theory; differential Galois theory; monodromy group; differential Galois group;
D O I
10.1016/S0375-9601(02)01259-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the ABC flow when A(2) = B-2, and we prove that this system does not admit a meromorphic first integral when ABC not equal 0. Moreover, for C-2/A(2) < 2 we prove that it does not possess a real meromorphic first integral. In our consideration we apply the Ziglin theory and the differential Galois theory. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 28 条
[1]  
[Anonymous], COMPUTER ALGEBRA DIF
[2]  
ARNOLD V, 1965, CR HEBD ACAD SCI, V261, P17
[3]  
Arnold V.I., 1984, SOME QUESTIONS MODER, P8
[4]  
AUDIN M, 2001, SYSTEMES HAMILTONIEN
[5]  
Balder A., 1996, FIELDS I COMMUN, V7, P5
[6]  
BEUKERS F, 1989, NUMBER THEORY PHYSIC, P413
[7]  
BOUCHER D, 2000, THESIS U LIMOGES FRA
[8]   CHAOTIC STREAMLINES IN THE ABC FLOWS [J].
DOMBRE, T ;
FRISCH, U ;
GREENE, JM ;
HENON, M ;
MEHR, A ;
SOWARD, AM .
JOURNAL OF FLUID MECHANICS, 1986, 167 :353-391
[9]  
GANTMAHER FR, 1988, THEORY MATRICES
[10]  
HENON M, 1966, CR ACAD SCI A MATH, V262, P312