Single-cell Transcriptome Study as Big Data

被引:23
作者
Yu, Pingjian [1 ]
Lin, Wei [1 ]
机构
[1] Baylor Inst Immunol Res, Genom & Bioinformat Lab, Dallas, TX 75204 USA
关键词
DIFFERENTIAL EXPRESSION ANALYSIS; GENOME-WIDE ASSOCIATION; RNA-SEQ ANALYSIS; GENE-EXPRESSION; SEQUENCING DATA; HADOOP; NORMALIZATION; FRAMEWORK; MAPREDUCE; TOOL;
D O I
10.1016/j.gpb.2016.01.005
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [41] Developmental trajectories of thalamic progenitors revealed by single-cell transcriptome
    Govek, Kiya W.
    Chen, Sixing
    Sgourdou, Paraskevi
    Yao, Yao
    Woodhouse, Steven
    Chen, Tingfang
    Fuccillo, Marc V.
    Epstein, Douglas J.
    Camara, Pablo G.
    CELL REPORTS, 2022, 41 (10):
  • [42] Spatial Single-cell Technologies for Exploring Gastrointestinal Tissue Transcriptome
    Kang, Hyun Min
    Lee, Jun Hee
    COMPREHENSIVE PHYSIOLOGY, 2023, 13 (03) : 4709 - 4718
  • [43] Analysis of single-cell transcriptome data from a mouse model implicates protein synthesis dysfunction in schizophrenia
    Weller, Andrew E.
    Ferraro, Thomas N.
    Doyle, Glenn A.
    Reiner, Benjamin C.
    Berrettini, Wade H.
    Crist, Richard C.
    GENES & GENOMICS, 2024, 46 (09) : 1071 - 1084
  • [44] SCRIP: an accurate simulator for single-cell RNA sequencing data
    Qin, Fei
    Luo, Xizhi
    Xiao, Feifei
    Cai, Guoshuai
    BIOINFORMATICS, 2022, 38 (05) : 1304 - 1311
  • [45] Normalizing single-cell RNA sequencing data: challenges and opportunities
    Vallejos, Catalina A.
    Risso, Davide
    Scialdone, Antonio
    Dudoit, Sandrine
    Marioni, John C.
    NATURE METHODS, 2017, 14 (06) : 565 - 571
  • [46] Plant biotechnology research with single-cell transcriptome: recent advancements and prospects
    Ali, Muhammad
    Yang, Tianxia
    He, Hai
    Zhang, Yu
    PLANT CELL REPORTS, 2024, 43 (03)
  • [47] SCInter: A comprehensive single-cell transcriptome integration database for human and mouse
    Zhao, Jun
    Wang, Yuezhu
    Feng, Chenchen
    Yin, Mingxue
    Gao, Yu
    Wei, Ling
    Song, Chao
    Ai, Bo
    Wang, Qiuyu
    Zhang, Jian
    Zhu, Jiang
    Li, Chunquan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 77 - 86
  • [48] Single-Cell Transcriptome Analysis Maps the Developmental Track of the Human Heart
    Cui, Yueli
    Zheng, Yuxuan
    Liu, Xixi
    Yan, Liying
    Fan, Xiaoying
    Yong, Jun
    Hu, Yuqiong
    Dong, Ji
    Li, Qingqing
    Wu, Xinglong
    Gao, Shuai
    Li, Jingyun
    Wen, Lu
    Qiao, Jie
    Tang, Fuchou
    CELL REPORTS, 2019, 26 (07): : 1934 - +
  • [49] Application of an RNA amplification method for reliable single-cell transcriptome analysis
    Suslov, Oleg
    Silver, Daniel J.
    Siebzehnrubl, Florian A.
    Orjalo, Arturo
    Ptitsyn, Andrey
    Steindler, Dennis A.
    BIOTECHNIQUES, 2015, 59 (03) : 137 - 148
  • [50] Building the mega single-cell transcriptome ocular meta-atlas
    Swamy, Vinay S.
    Fufa, Temesgen D.
    Hufnagel, Robert B.
    McGaughey, David M.
    GIGASCIENCE, 2021, 10 (10):