Single-cell Transcriptome Study as Big Data

被引:23
|
作者
Yu, Pingjian [1 ]
Lin, Wei [1 ]
机构
[1] Baylor Inst Immunol Res, Genom & Bioinformat Lab, Dallas, TX 75204 USA
关键词
DIFFERENTIAL EXPRESSION ANALYSIS; GENOME-WIDE ASSOCIATION; RNA-SEQ ANALYSIS; GENE-EXPRESSION; SEQUENCING DATA; HADOOP; NORMALIZATION; FRAMEWORK; MAPREDUCE; TOOL;
D O I
10.1016/j.gpb.2016.01.005
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [41] Single-Cell Genomics Clarifies Big Picture
    Stein, Richard A.
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2009, 29 (11): : 42 - 43
  • [42] New generative methods for single-cell transcriptome data in bulk RNA sequence deconvolution
    Nishikawa, Toui
    Lee, Masatoshi
    Amau, Masataka
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [43] New generative methods for single-cell transcriptome data in bulk RNA sequence deconvolution
    Toui Nishikawa
    Masatoshi Lee
    Masataka Amau
    Scientific Reports, 14
  • [44] Gleaning Euglenozoa-specific DNA polymerases in public single-cell transcriptome data
    Harada, Ryo
    Inagaki, Yuji
    PROTIST, 2023, 174 (06)
  • [45] Joint inference of clonal structure using single-cell genome and transcriptome sequencing data
    Bai, Xiangqi
    Duren, Zhana
    Wan, Lin
    Xia, Li C.
    NAR GENOMICS AND BIOINFORMATICS, 2024, 6 (01)
  • [46] Dissecting and improving gene regulatory network inference using single-cell transcriptome data
    Xue, Lingfeng
    Wu, Yan
    Lin, Yihan
    GENOME RESEARCH, 2023, 33 (09) : 1609 - 1621
  • [47] Metabolic reprogramming landscape of pan-cancer by single-cell transcriptome data integration
    Shang, Yunfei
    Zeng, Jingyao
    Mai, Jialin
    Xiao, Jingfa
    SCIENCE BULLETIN, 2025, 70 (06): : 852 - 855
  • [48] De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc
    Li, Runze
    Yang, Xuerui
    GENOME BIOLOGY, 2022, 23 (01)
  • [49] A scalable sparse neural network framework for rare cell type annotation of single-cell transcriptome data
    Cheng, Yuqi
    Fan, Xingyu
    Zhang, Jianing
    Li, Yu
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [50] A scalable sparse neural network framework for rare cell type annotation of single-cell transcriptome data
    Yuqi Cheng
    Xingyu Fan
    Jianing Zhang
    Yu Li
    Communications Biology, 6