Single-cell Transcriptome Study as Big Data

被引:23
|
作者
Yu, Pingjian [1 ]
Lin, Wei [1 ]
机构
[1] Baylor Inst Immunol Res, Genom & Bioinformat Lab, Dallas, TX 75204 USA
关键词
DIFFERENTIAL EXPRESSION ANALYSIS; GENOME-WIDE ASSOCIATION; RNA-SEQ ANALYSIS; GENE-EXPRESSION; SEQUENCING DATA; HADOOP; NORMALIZATION; FRAMEWORK; MAPREDUCE; TOOL;
D O I
10.1016/j.gpb.2016.01.005
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [31] A single-cell transcriptome atlas for zebrafish development
    Farnsworth, Dylan R.
    Saunders, Lauren M.
    Miller, Adam C.
    DEVELOPMENTAL BIOLOGY, 2020, 459 (02) : 100 - 108
  • [32] Single-cell transcriptome analysis of endometrial tissue
    Krjutskov, K.
    Katayama, S.
    Saare, M.
    Vera-Rodriguez, M.
    Lubenets, D.
    Samuel, K.
    Laisk-Podar, T.
    Teder, H.
    Einarsdottir, E.
    Salumets, A.
    Kere, J.
    HUMAN REPRODUCTION, 2016, 31 (04) : 844 - 853
  • [33] SPANN: annotating single-cell resolution spatial transcriptome data with scRNA-seq data
    Yuan, Musu
    Wan, Hui
    Wang, Zihao
    Guo, Qirui
    Deng, Minghua
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [34] Protocol for profiling cell-centric assembled single-cell human transcriptome data in hECA
    Chen, Yixin
    Hao, Minsheng
    Gao, Haoxiang
    Li, Jiaqi
    Chen, Sijie
    Li, Fanhong
    Wei, Lei
    Zhang, Xuegong
    STAR PROTOCOLS, 2022, 3 (03): : 101589
  • [35] Reconstructing cell cycle pseudo time-series via single-cell transcriptome data
    Zehua Liu
    Huazhe Lou
    Kaikun Xie
    Hao Wang
    Ning Chen
    Oscar M. Aparicio
    Michael Q. Zhang
    Rui Jiang
    Ting Chen
    Nature Communications, 8
  • [36] Reconstructing cell cycle pseudo time-series via single-cell transcriptome data
    Liu, Zehua
    Lou, Huazhe
    Xie, Kaikun
    Wang, Hao
    Chen, Ning
    Aparicio, Oscar M.
    Zhang, Michael Q.
    Jiang, Rui
    Chen, Ting
    NATURE COMMUNICATIONS, 2017, 8
  • [37] Single-Cell Transcriptome Analysis as a Promising Tool to Study Pluripotent Stem Cell Reprogramming
    Kim, Hyun Kyu
    Ha, Tae Won
    Lee, Man Ryul
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (11)
  • [38] Approaches for the integration of big data in translational medicine: single-cell and computational methods
    Amirmahani, Farzane
    Ebrahimi, Nasim
    Molaei, Fatemeh
    Faghihkhorasani, Ferdos
    Goharrizi, Kiarash Jamshidi
    Mirtaghi, Seyede Masoumeh
    Borjian-Boroujeni, Marziyeh
    Hamblin, Michael R.
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2021, 1493 (01) : 3 - 28
  • [39] Big data comes in tiny packages: Single-cell driven science and health
    Sachs, Karen
    Chen, Tiffany
    XRDS: Crossroads, 2015, 21 (04): : 54 - 59
  • [40] Advances in Single-Cell Transcriptome Sequencing and Spatial Transcriptome Sequencing in Plants
    Lv, Zhuo
    Jiang, Shuaijun
    Kong, Shuxin
    Zhang, Xu
    Yue, Jiahui
    Zhao, Wanqi
    Li, Long
    Lin, Shuyan
    PLANTS-BASEL, 2024, 13 (12):