Single-cell Transcriptome Study as Big Data

被引:23
作者
Yu, Pingjian [1 ]
Lin, Wei [1 ]
机构
[1] Baylor Inst Immunol Res, Genom & Bioinformat Lab, Dallas, TX 75204 USA
关键词
DIFFERENTIAL EXPRESSION ANALYSIS; GENOME-WIDE ASSOCIATION; RNA-SEQ ANALYSIS; GENE-EXPRESSION; SEQUENCING DATA; HADOOP; NORMALIZATION; FRAMEWORK; MAPREDUCE; TOOL;
D O I
10.1016/j.gpb.2016.01.005
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [31] Research Progress of Single-Cell Transcriptome Sequencing Technology in Plants
    Bian, Jianwen
    Zhuang, Zelong
    Ji, Xiangzhuo
    Tang, Rui
    Li, Jiawei
    Chen, Jiangtao
    Li, Zhiming
    Peng, Yunling
    AGRONOMY-BASEL, 2024, 14 (11):
  • [32] Research strategies for single-cell transcriptome analysis in plant leaves
    Liu, Zhixin
    Yu, Xiaole
    Qin, Aizhi
    Zhao, Zihao
    Liu, Yumeng
    Sun, Susu
    Liu, Hao
    Guo, Chenxi
    Wu, Rui
    Yang, Jincheng
    Hu, Mengke
    Bawa, George
    Sun, Xuwu
    PLANT JOURNAL, 2022, 112 (01) : 27 - 37
  • [33] Single-cell transcriptome atlas of the leaf and root of rice seedlings
    Wang, Yu
    Huan, Qing
    Li, Ke
    Qian, Wenfeng
    JOURNAL OF GENETICS AND GENOMICS, 2021, 48 (10) : 881 - 898
  • [34] A Single-Cell Approach to the Elusive Latent Human Cytomegalovirus Transcriptome
    Goodrum, Felicia
    McWeeney, Shannon
    MBIO, 2018, 9 (03):
  • [35] A Single-Cell Transcriptome Atlas of the Human Retinal Pigment Epithelium
    Xu, Zongren
    Liao, Xingyun
    Li, Na
    Zhou, Hongxiu
    Li, Hong
    Zhang, Qi
    Hu, Ke
    Yang, Peizeng
    Hou, Shengping
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [36] The Advancement and Application of the Single-Cell Transcriptome in Biological and Medical Research
    Huang, Kongwei
    Xu, Yixue
    Feng, Tong
    Lan, Hong
    Ling, Fei
    Xiang, Hai
    Liu, Qingyou
    BIOLOGY-BASEL, 2024, 13 (06):
  • [37] Tree inference for single-cell data
    Jahn, Katharina
    Kuipers, Jack
    Beerenwinkel, Niko
    GENOME BIOLOGY, 2016, 17
  • [38] Comprehensive Integration of Single-Cell Data
    Stuart, Tim
    Butler, Andrew
    Hoffman, Paul
    Hafemeister, Christoph
    Papalexi, Efthymia
    Mauck, William M., III
    Hao, Yuhan
    Stoeckius, Marlon
    Smibert, Peter
    Satija, Rahul
    CELL, 2019, 177 (07) : 1888 - +
  • [39] Research progress of single-cell transcriptome sequencing in autoimmune diseases and autoinflammatory disease: A review
    Zeng, Liuting
    Yang, Kailin
    Zhang, Tianqing
    Zhu, Xiaofei
    Hao, Wensa
    Chen, Hua
    Ge, Jinwen
    JOURNAL OF AUTOIMMUNITY, 2022, 133
  • [40] Integrative analyses of single-cell transcriptome and regulome using MAESTRO
    Wang, Chenfei
    Sun, Dongqing
    Huang, Xin
    Wan, Changxin
    Li, Ziyi
    Han, Ya
    Qin, Qian
    Fan, Jingyu
    Qiu, Xintao
    Xie, Yingtian
    Meyer, Clifford A.
    Brown, Myles
    Tang, Ming
    Long, Henry
    Liu, Tao
    Liu, X. Shirley
    GENOME BIOLOGY, 2020, 21 (01)