Single-cell Transcriptome Study as Big Data

被引:23
作者
Yu, Pingjian [1 ]
Lin, Wei [1 ]
机构
[1] Baylor Inst Immunol Res, Genom & Bioinformat Lab, Dallas, TX 75204 USA
关键词
DIFFERENTIAL EXPRESSION ANALYSIS; GENOME-WIDE ASSOCIATION; RNA-SEQ ANALYSIS; GENE-EXPRESSION; SEQUENCING DATA; HADOOP; NORMALIZATION; FRAMEWORK; MAPREDUCE; TOOL;
D O I
10.1016/j.gpb.2016.01.005
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [1] Development and applications of single-cell transcriptome analysis
    Tang, Fuchou
    Lao, Kaiqin
    Surani, M. Azim
    NATURE METHODS, 2011, 8 (04) : S6 - S11
  • [2] Quantitative single-cell transcriptomics
    Ziegenhain, Christoph
    Vieth, Beate
    Parekh, Swati
    Hellmann, Ines
    Enard, Wolfgang
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (04) : 220 - 232
  • [3] Computational assignment Of cell-cycle stage from single-cell transcriptome data
    Scialdone, Antonio
    Natarajan, Kedar N.
    Saraiva, Luis R.
    Proserpio, Valentina
    Teichmann, Sarah A.
    Stegle, Oliver
    Marioni, John C.
    Buettner, Florian
    METHODS, 2015, 85 : 54 - 61
  • [4] De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data
    Grun, Dominic
    Muraro, Mauro J.
    Boisset, Jean-Charles
    Wiebrands, Kay
    Lyubimova, Anna
    Dharmadhikari, Gitanjali
    van den Born, Maaike
    van Es, Johan
    Jansen, Erik
    Clevers, Hans
    de Koning, Eelco J. P.
    van Oudenaarden, Alexander
    CELL STEM CELL, 2016, 19 (02) : 266 - 277
  • [5] Big data analytics in single-cell transcriptomics: Five grand opportunities
    Bhattacharya, Namrata
    Nelson, Colleen C.
    Ahuja, Gaurav
    Sengupta, Debarka
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (04)
  • [6] Analysis of transcriptome of single-cell RNA sequencing data using machine learning
    Rajesh, Mothe
    Martha, Sheshikala
    SOFT COMPUTING, 2023, 27 (13) : 9131 - 9141
  • [7] SINGLE-CELL TRANSCRIPTOME ANALYSIS IN HEALTH AND DISEASE
    Bhattachan, Punit
    Jeschke, Marc G.
    SHOCK, 2024, 61 (01): : 19 - 27
  • [8] The Drosophila embryo at single-cell transcriptome resolution
    Karaiskos, Nikos
    Wahle, Philipp
    Alles, Jonathan
    Boltengagen, Anastasiya
    Ayoub, Salah
    Kipar, Claudia
    Kocks, Christine
    Rajewsky, Nikolaus
    Zinzen, Robert P.
    SCIENCE, 2017, 358 (6360) : 194 - 199
  • [9] A Single-Cell Transcriptome Atlas of the Mouse Glomerulus
    Karaiskos, Nikos
    Rahmatollahi, Mahdieh
    Boltengagen, Anastasiya
    Liu, Haiyue
    Hoehne, Martin
    Rinschen, Markus
    Schermer, Bernhard
    Benzing, Thomas
    Rajewsky, Nikolaus
    Kocks, Christine
    Kann, Martin
    Mueller, Roman-Ulrich
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2018, 29 (08): : 2060 - 2068
  • [10] A Single-Cell Transcriptome Atlas of the Human Pancreas
    Muraro, Mauro J.
    Dharmadhikari, Gitanjali
    Gruen, Dominic
    Groen, Nathalie
    Dielen, Tim
    Jansen, Erik
    van Gurp, Leon
    Engelse, Marten A.
    Carlotti, Francoise
    de Koning, Eelco J. P.
    van Oudenaarden, Alexander
    CELL SYSTEMS, 2016, 3 (04) : 385 - +