Single-cell Transcriptome Study as Big Data

被引:23
|
作者
Yu, Pingjian [1 ]
Lin, Wei [1 ]
机构
[1] Baylor Inst Immunol Res, Genom & Bioinformat Lab, Dallas, TX 75204 USA
关键词
DIFFERENTIAL EXPRESSION ANALYSIS; GENOME-WIDE ASSOCIATION; RNA-SEQ ANALYSIS; GENE-EXPRESSION; SEQUENCING DATA; HADOOP; NORMALIZATION; FRAMEWORK; MAPREDUCE; TOOL;
D O I
10.1016/j.gpb.2016.01.005
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [1] Single-cell Transcriptome Study as Big Data
    Pingjian Yu
    Wei Lin
    Genomics,Proteomics & Bioinformatics, 2016, (01) : 21 - 30
  • [2] Imputation method for dropout in single-cell transcriptome data
    Jiang C.
    Hu L.
    Xu C.
    Ge Q.
    Zhao X.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (04): : 778 - 783
  • [4] Prediction of HLA genotypes from single-cell transcriptome data
    Solomon, Benjamin D.
    Zheng, Hong
    Dillon, Laura W.
    Goldman, Jason D.
    Hourigan, Christopher S.
    Heath, James R.
    Khatri, Purvesh
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [5] In search of a Drosophila core cellular network with single-cell transcriptome data
    Yang, Ming
    Harrison, Benjamin R.
    Promislow, Daniel E. L.
    G3-GENES GENOMES GENETICS, 2022, 12 (10):
  • [6] Single-cell transcriptome study in forensic medicine: prospective applications
    Yang, Qiuyun
    Wu, Yuhang
    Li, Manrui
    Cao, Shuqiang
    Guo, Yadong
    Zhang, Lin
    Chen, Xiameng
    Liang, Weibo
    INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2022, 136 (06) : 1737 - 1743
  • [7] scVSC: Deep Variational Subspace Clustering for Single-Cell Transcriptome Data
    Wang, Zile
    Wang, Haiyun
    Zhao, Jianping
    Xia, Junfeng
    Zheng, Chunhou
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (05) : 1492 - 1503
  • [8] Robust classification of single-cell transcriptome data by nonnegative matrix factorization
    Shao, Chunxuan
    Hoefer, Thomas
    BIOINFORMATICS, 2017, 33 (02) : 235 - 242
  • [9] SINGLE-CELL TRANSCRIPTOME ANALYSIS OF MEDULLOBLASTOMA
    Hovestadt, Volker
    Filbin, Mariella G.
    Bihannic, Laure
    Shaw, McKenzie L.
    DeWitt, John M.
    Groves, Andrew
    Smith, Kyle S.
    Hadley, Jennifer
    Gajjar, Amar
    Robinson, Giles W.
    Mayr, Lisa
    Slavc, Irene
    Goumnerova, Liliana
    Ligon, Keith L.
    Suva, Mario L.
    Northcott, Paul A.
    Bernstein, Bradley E.
    NEURO-ONCOLOGY, 2018, 20 : 134 - 134
  • [10] Single-cell transcriptome analysis of medulloblastoma
    DeWitt, John
    Hovestadt, Volker
    Filbin, Mariella
    Bihannic, Laure
    Shaw, Mckenzie
    Groves, Andrew
    Smith, Kyle
    Hadley, Jennifer
    Gajjar, Amar
    Robinson, Giles
    Mayr, Lisa
    Slavc, Irene
    Goumnerova, Liliana
    Ligon, Keith
    Suva, Mario
    Northcott, Paul
    Bernstein, Bradley
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2018, 77 (06): : 504 - 505