Threshold based MEG data Classification for Healthy and Epileptic Subjects

被引:0
作者
Khalid, Muhammad Imran [1 ]
Aldosari, Saeed A. [1 ]
Alshebeili, Saleh A. [1 ]
Alotaiby, Turky [2 ]
机构
[1] King Saud Univ, Dept Elect Engn, KACST TIC Radio Frequency & Photon E Soc RFTONICS, Riyadh, Saudi Arabia
[2] King Abdulaziz City Sci & Technol, Riyadh, Saudi Arabia
来源
2016 5TH INTERNATIONAL CONFERENCE ON ELECTRONIC DEVICES, SYSTEMS AND APPLICATIONS (ICEDSA) | 2016年
关键词
EEG frequency bands; Epilepsy; MEG; Classification; MAGNETOENCEPHALOGRAPHY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The most commonly used clinical tool for initial diagnosis of epilepsy is electroencephalogram (EEG). Recent advances in magnetoencephalography (MEG) technology provide a new source of information to analyze brain activities. In order to determine whether or not particular subjects' brain signals exhibit epileptic activities, epileptologists often spend considerable amount of time to review MEG recordings. This paper proposes a new algorithm for automatic classification of MEG data into two classes: data that belongs to healthy subjects and data that belongs to epileptic subjects. The classifier makes use of energy values of Delta and Theta bands. The effectiveness of proposed classifier has been tested using real MEG data obtained from 35 healthy subjects and 35 epileptic patients. Results obtained from the classifier show that the proposed classifier can be used as a tool in the initial diagnosis phase of epilepsy.
引用
收藏
页数:3
相关论文
共 13 条
[1]   The Value of Magnetoencephalography to Guide Electrode Implantation in Epilepsy [J].
Agirre-Arrizubieta, Zaloa ;
Thai, Ngoc J. ;
Valentin, Antonio ;
Furlong, Paul L. ;
Seri, Stefano ;
Selway, Richard P. ;
Elwes, Robert D. C. ;
Alarcon, Gonzalo .
BRAIN TOPOGRAPHY, 2014, 27 (01) :197-207
[2]   EEG seizure detection and prediction algorithms: a survey [J].
Alotaiby, Turkey N. ;
Alshebeili, Saleh A. ;
Alshawi, Tariq ;
Ahmad, Ishtiaq ;
Abd El-Samie, Fathi E. .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2014, :1-21
[3]   Epileptic seizure prediction using relative spectral power features [J].
Bandarabadi, Mojtaba ;
Teixeira, Cesar A. ;
Rasekhi, Jalil ;
Dourado, Antonio .
CLINICAL NEUROPHYSIOLOGY, 2015, 126 (02) :237-248
[4]   Controversies in neurophysiology. MEG is superior to EEG in localization of interictal epileptiform activity: Pro [J].
Barkley, GL .
CLINICAL NEUROPHYSIOLOGY, 2004, 115 (05) :1001-1009
[6]   Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity [J].
Dale, AM ;
Liu, AK ;
Fischl, BR ;
Buckner, RL ;
Belliveau, JW ;
Lewine, JD ;
Halgren, E .
NEURON, 2000, 26 (01) :55-67
[7]   Spatiotemporal mapping of brain activity by integration of multiple imaging modalities [J].
Dale, AM ;
Halgren, E .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (02) :202-208
[8]   Automatic Epileptic Seizure Detection Using Scalp EEG and Advanced Artificial Intelligence Techniques [J].
Fergus, Paul ;
Hignett, David ;
Hussain, Abir ;
Al-Jumeily, Dhiya ;
Abdel-Aziz, Khaled .
BIOMED RESEARCH INTERNATIONAL, 2015, 2015
[9]  
Khalid MI, 2015, 2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), P1302, DOI 10.1109/GlobalSIP.2015.7418409
[10]  
Khalid MI, 2015, IEEE INT SYMP SIGNAL, P360, DOI 10.1109/ISSPIT.2015.7394360