Electrical Efficiency Enhancement of Thermal-Thermoelectric Photovoltaic Hybrid Solar System (PVT-TE) by Thermoelectric Effect

被引:0
作者
Nazri, Nurul Syakirah [1 ]
Fudholi, Ahmad [1 ,2 ]
Mohammad, Masita [1 ]
Nandar, Cuk Supriyadi Ali [2 ]
Sudibyo, Henny [2 ]
Abimanyu, Haznan [2 ]
Sopian, Kamaruzzaman [1 ]
Ibrahim, Mohd Adib [1 ]
机构
[1] Univ Kebangsaan Malaysia, Solar Energy Res Inst, Ukm Bangi 43600, Selangor Darul, Malaysia
[2] Natl Res & Innovat Agcy BRIN, Res Ctr Energy Convers & Conservat, Cibinong, West Java, Indonesia
来源
SAINS MALAYSIANA | 2022年 / 51卷 / 12期
关键词
Electrical efficiency; photovoltaic thermal; solar collector; thermoelectric; DESIGN; PERFORMANCE;
D O I
10.17576/jsm-2022-5112-19
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A photovoltaic thermal (PVT) system uses a photovoltaic and a solar thermal collector to create heat and electricity. Since both heat and electricity may be generated and consumed concurrently, PVT systems have a greater energy output per unit area than PV modules or solar thermal collectors. Air-based PVT collectors employ air as a heat transfer medium and flow patterns impact collector performance. Experiments were used to evaluate the thermal and electrical performance of an air- based PVT collector. In addition to lowering the surface temperature of PV cells, the thermoelectric Seebeck effect enables the thermal gradient induced by the heat generated in the PV module to generate electricity. Combining thermoelectric generators (TE) with PVT systems is an innovative way to further enhance solar energy conversion and increase electric power. In addition, the combination of both systems has the potential to improve performance owing to the compensatory effects of both systems. The thermoelectric generator may utilise the solar system's waste heat to create extra energy, therefore enhancing the hybrid system's total power output and efficiency of the PVT-TE system. The effect of mass flow rate and radiation intensity is also being investigated. Experimental studies were carried out at airflow rate of 0.009 kg/s, 0.021 kg/s, 0.039 kg/s, 0.069 kg/s and 0.095 kg/s and radiation intensities in the range of 455.64 W/m(2) to 795.18 W/m(2). These readings were used in calculating the thermal and electrical efficiency of the proposed PVT system. The output PVT power was compared between `with TE' and `without TE' conditions. Overall, the output power of the PVT-TE system is also higher than the PVT system in the range of 32.59% to 55.93%.
引用
收藏
页码:4111 / 4124
页数:14
相关论文
共 50 条
[41]   Experimental and simulation study on a novel photovoltaic-thermal (PVT) system with enhanced combined thermal and electrical efficiency [J].
Liu, Ning ;
Jiang, Denghui ;
Liu, Huakai ;
Sun, Ke ;
Bai, Shuzhan .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2025, 47 (01) :12059-12076
[42]   Efficiency and flexibility enhancement of nanofluid-based hybrid solar desalination system equipped with thermoelectric generator for eco-friendly freshwater and power cogeneration [J].
Ebadollahi, Mohammad ;
Shahbazi, Behzad ;
Ghaebi, Hadi .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 190 :108-122
[43]   Maximum Power Extraction from a Photovoltaic Panel and a Thermoelectric Generator Constituting a Hybrid Electrical Generation System [J].
Belkaid, Abdelhakim ;
Colak, Ilhami ;
Kayisli, Korhan ;
Bayindir, Ramazan ;
Bulbul, Halil Ibrahim .
2018 6TH IEEE INTERNATIONAL CONFERENCE ON SMART GRID (ICSMARTGRIDS), 2018, :276-282
[44]   Energy generation and storing electrical energy in an energy hybrid system consisting of solar thermal collector, Stirling engine and thermoelectric generator [J].
Dong, Hao ;
Guo, Ju'e ;
Liu, Jinbao ;
Meng, Tingting ;
Li, Minglu ;
Chen, Ximeng ;
Li, Na ;
Alavi, Hosein .
SUSTAINABLE CITIES AND SOCIETY, 2021, 75
[45]   Design and dynamic simulation of a novel solar trigeneration system based on hybrid photovoltaic/thermal collectors (PVT) [J].
Calise, Francesco ;
d'Accadia, Massimo Dentice ;
Vanoli, Laura .
ENERGY CONVERSION AND MANAGEMENT, 2012, 60 :214-225
[46]   High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management [J].
Zhu, Wei ;
Deng, Yuan ;
Wang, Yao ;
Shen, Shengfei ;
Gulfam, Raza .
ENERGY, 2016, 100 :91-101
[47]   Thermal management of photovoltaic-thermoelectric generator hybrid system using radiative cooling and heat pipe [J].
Kumar, Ramesh ;
Montero, Francisco J. ;
Lamba, Ravita ;
Vashishtha, Manish ;
Upadhyaya, Sushant .
APPLIED THERMAL ENGINEERING, 2023, 227
[48]   Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials [J].
Maleki, Yaser ;
Pourfayaz, Fathollah ;
Mehrpooya, Mehdi .
RENEWABLE ENERGY, 2022, 201 :202-215
[49]   Development of an integrated hybrid solar thermal power system with thermoelectric generator for desalination and power production [J].
Demir, Murat Emre ;
Dincer, Ibrahim .
DESALINATION, 2017, 404 :59-71
[50]   Investigation of innovative cooling system for photovoltaic solar unit in existence of thermoelectric layer utilizing hybrid nanomaterial and Y-shaped fins [J].
Khalili, Z. ;
Sheikholeslami, M. .
SUSTAINABLE CITIES AND SOCIETY, 2023, 93