Comparative analysis on pore-scale permeability prediction on micro-CT images of rock using numerical and empirical approaches

被引:59
作者
Song, Rui [1 ]
Wang, Yao [1 ]
Liu, Jianjun [1 ,2 ]
Cui, Mengmeng [3 ]
Lei, Yun [4 ,5 ]
机构
[1] Southwest Petr Univ, Sch Geosci & Technol, Chengdu, Sichuan, Peoples R China
[2] Chinese Acad Sci, State Key Lab Geomech & Geotech Engn, Wuhan Inst Rock & Soil Mech, Wuhan, Hubei, Peoples R China
[3] Southwest Petr Univ, Sch Petr & Nat Gas Engn, Chengdu, Sichuan, Peoples R China
[4] China Coal Technol & Engn Grp Corp, Shenyang Res Inst, Shenyang, Liaoning, Peoples R China
[5] State Key Lab Coal Mine Safety Technol, Shenyang, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Kozeny-Carman equation; Lattice Boltzmann method; micro-CT; Navier-Stokes equation; permeability; pore network model; LATTICE BOLTZMANN METHOD; POROUS-MEDIA; KOZENY-CARMAN; FLOW; MODEL; SIMULATIONS;
D O I
10.1002/ese3.465
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Varieties of pore-scale numerical and empirical approaches have been proposed to predict the rock permeability when the pore structure is known, for example, microscopic computerized tomography (micro-CT) technology. A comparative study on these approaches is conducted in this paper. A reference dataset of nine micro-CT images of porous rocks is generated and processed including artificial sandpacks, tight sandstone, and carbonate. Multiple numerical and empirical approaches are used to compute the absolute permeability of micro-CT images including the image voxel-based solver (VBS), pore network model (PNM), Lattice Boltzmann method (LBM), Kozeny-Carman (K-C) equation, and Thomeer relation. Computational accuracy and efficiency of different numerical approaches are investigated. The results indicate that good agreements among numerical solvers are achieved for the sample with a homogeneous structure, while the disagreement increases with an increase in heterogeneity and complexity of pore structure. The LBM and VBS solver both have a relative higher computation accuracy, whereas the PNM solver is less accurate due to simplification on the topological structure. The computation efficiency of the different solver is generally computation resources dependent, and the PNM solver is the fastest, followed by VBS and LBM solver. As expected, empirical relation can over-estimate permeability by a magnification of 50 or more, particularly for those strong heterogeneous structures reported in this study. Nevertheless, empirical relation is still applicable for artificial rocks.
引用
收藏
页码:2842 / 2854
页数:13
相关论文
共 44 条
[1]   A distributed parallel multiple-relaxation-time lattice Boltzmann method on general-purpose graphics processing units for the rapid and scalable computation of absolute permeability from high-resolution 3D micro-CT images [J].
Alpak, F. O. ;
Gray, F. ;
Saxena, N. ;
Dietderich, J. ;
Hofmann, R. ;
Berg, S. .
COMPUTATIONAL GEOSCIENCES, 2018, 22 (03) :815-832
[2]   Virtual permeametry on microtomographic images [J].
Arns, CH ;
Knackstedt, MA ;
Pinczewski, WV ;
Martys, NS .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2004, 45 (1-2) :41-46
[3]   A Predictive Pore-Scale Model for Non-Darcy Flow in Porous Media [J].
Balhoff, Matthew T. ;
Wheeler, Mary F. .
SPE JOURNAL, 2009, 14 (04) :579-587
[4]   Pore-scale imaging and modelling [J].
Blunt, Martin J. ;
Bijeljic, Branko ;
Dong, Hu ;
Gharbi, Oussama ;
Iglauer, Stefan ;
Mostaghimi, Peyman ;
Paluszny, Adriana ;
Pentland, Christopher .
ADVANCES IN WATER RESOURCES, 2013, 51 :197-216
[5]   Flow in porous media - pore-network models and multiphase flow [J].
Blunt, MJ .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2001, 6 (03) :197-207
[6]   Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries [J].
Boek, Edo S. ;
Venturoli, Maddalena .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (07) :2305-2314
[7]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[8]  
CHILINGARIAN GV, 1992, DEV PETROLEUM SCI, V30, P379
[9]  
Dong H., 2007, Micro CT Imaging and Pore Network Extraction
[10]  
Fatt I, 1956, AIME T