Leveraging Gene-Level Prediction as Informative Covariate in Hypothesis Weighting Improves Power for Rare Variant Association Studies

被引:0
作者
Ji, Ying [1 ,2 ]
Chen, Rui [1 ,2 ]
Wang, Quan [1 ,2 ]
Wei, Qiang [1 ,2 ]
Tao, Ran [1 ,3 ]
Li, Bingshan [1 ,2 ]
机构
[1] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Vanderbilt Genet Inst, Nashville, TN 37203 USA
[3] Vanderbilt Univ, Dept Biostat, Nashville, TN 37203 USA
关键词
rare variant association study; gene prioritization; multiple hypothesis testing; false discovery rate; GWAS; machine learning; neuropsychiatric disorders; GENOME-WIDE ASSOCIATION; AUTISM SPECTRUM DISORDER; SCHIZOPHRENIA;
D O I
10.3390/genes13020381
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gene-based rare variant association studies (RVASs) have low power due to the infrequency of rare variants and the large multiple testing burden. To correct for multiple testing, traditional false discovery rate (FDR) procedures which depend solely on P-values are often used. Recently, Independent Hypothesis Weighting (IHW) was developed to improve the detection power while maintaining FDR control by leveraging prior information for each hypothesis. Here, we present a framework to increase power of gene-based RVASs by incorporating prior information using IHW. We first build supervised machine learning models to assign each gene a prediction score that measures its disease risk, using the input of multiple biological features, fed with high-confidence risk genes and local background genes selected near GWAS significant loci as the training set. Then we use the prediction scores as covariates to prioritize RVAS results via IHW. We demonstrate the effectiveness of this framework through applications to RVASs in schizophrenia and autism spectrum disorder. We found sizeable improvements in the number of significant associations compared to traditional FDR approaches, and independent evidence supporting the relevance of the genes identified by our framework but not traditional FDR, demonstrating the potential of our framework to improve power of gene-based RVASs.
引用
收藏
页数:15
相关论文
共 63 条
[1]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[2]   Cordon-bleu is an actin nucleation factor and controls neuronal morphology [J].
Ahuja, Rashmi ;
Pinyol, Roser ;
Reichenbach, Nicole ;
Custer, Laura ;
Klingensmith, John ;
Kessels, Michael M. ;
Qualmann, Britta .
CELL, 2007, 131 (02) :337-350
[3]   An atlas of active enhancers across human cell types and tissues [J].
Andersson, Robin ;
Gebhard, Claudia ;
Miguel-Escalada, Irene ;
Hoof, Ilka ;
Bornholdt, Jette ;
Boyd, Mette ;
Chen, Yun ;
Zhao, Xiaobei ;
Schmidl, Christian ;
Suzuki, Takahiro ;
Ntini, Evgenia ;
Arner, Erik ;
Valen, Eivind ;
Li, Kang ;
Schwarzfischer, Lucia ;
Glatz, Dagmar ;
Raithel, Johanna ;
Lilje, Berit ;
Rapin, Nicolas ;
Bagger, Frederik Otzen ;
Jorgensen, Mette ;
Andersen, Peter Refsing ;
Bertin, Nicolas ;
Rackham, Owen ;
Burroughs, A. Maxwell ;
Baillie, J. Kenneth ;
Ishizu, Yuri ;
Shimizu, Yuri ;
Furuhata, Erina ;
Maeda, Shiori ;
Negishi, Yutaka ;
Mungall, Christopher J. ;
Meehan, Terrence F. ;
Lassmann, Timo ;
Itoh, Masayoshi ;
Kawaji, Hideya ;
Kondo, Naoto ;
Kawai, Jun ;
Lennartsson, Andreas ;
Daub, Carsten O. ;
Heutink, Peter ;
Hume, David A. ;
Jensen, Torben Heick ;
Suzuki, Harukazu ;
Hayashizaki, Yoshihide ;
Mueller, Ferenc ;
Forrest, Alistair R. R. ;
Carninci, Piero ;
Rehli, Michael ;
Sandelin, Albin .
NATURE, 2014, 507 (7493) :455-+
[4]   Improved Detection of Common Variants Associated with Schizophrenia and Bipolar Disorder Using Pleiotropy-Informed Conditional False Discovery Rate [J].
Andreassen, Ole A. ;
Thompson, Wesley K. ;
Schork, Andrew J. ;
Ripke, Stephan ;
Mattingsdal, Morten ;
Kelsoe, John R. ;
Kendler, Kenneth S. ;
O'Donovan, Michael C. ;
Rujescu, Dan ;
Werge, Thomas ;
Sklar, Pamela ;
Roddey, J. Cooper ;
Chen, Chi-Hua ;
McEvoy, Linda ;
Desikan, Rahul S. ;
Djurovic, Srdjan ;
Dale, Anders M. .
PLOS GENETICS, 2013, 9 (04)
[5]   Characterization of the proteome, diseases and evolution of the human postsynaptic density [J].
Bayes, Alex ;
van de Lagemaat, Louie N. ;
Collins, Mark O. ;
Croning, Mike D. R. ;
Whittle, Ian R. ;
Choudhary, Jyoti S. ;
Grant, Seth G. N. .
NATURE NEUROSCIENCE, 2011, 14 (01) :19-21
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]  
Bonferroni C., 1936, Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, V8, P3, DOI DOI 10.4135/9781412961288.N455
[8]   LD Score regression distinguishes confounding from polygenicity in genome-wide association studies [J].
Bulik-Sullivan, Brendan K. ;
Loh, Po-Ru ;
Finucane, Hilary K. ;
Ripke, Stephan ;
Yang, Jian ;
Patterson, Nick ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (03) :291-+
[9]   Contact in the genetics of autism and schizophrenia [J].
Burbach, J. Peter H. ;
van der Zwaag, Bert .
TRENDS IN NEUROSCIENCES, 2009, 32 (02) :69-72
[10]   Heads-Up: New Roles for the Fragile X Mental Retardation Protein in Neural Stem and Progenitor Cells [J].
Callan, Matthew A. ;
Zarnescu, Daniela C. .
GENESIS, 2011, 49 (06) :424-440