Optical pumping of quantum dot micropillar lasers

被引:11
作者
Andreoli, L. [1 ]
Porte, X. [1 ]
Heuser, T. [2 ]
Grobe, J. [2 ]
Moeglen-Paget, B. [1 ]
Furfaro, L. [1 ]
Reitzenstein, S. [2 ]
Brunner, D. [1 ]
机构
[1] Univ Bourgogne Franche Comte, FEMTO ST Opt Dept, UMR CNRS 6174, 15B Ave Montboucons, F-25030 Besancon, France
[2] Tech Univ Berlin, Inst Solid State Phys, Hardenbergstr 36, D-10632 Berlin, Germany
基金
欧盟地平线“2020”;
关键词
ABSORPTION;
D O I
10.1364/OE.417063
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Arrays of quantum dot micropillar lasers are an attractive technology platform for various applications in the wider field of nanophotonics. Of particular interest is the potential efficiency enhancement as a consequence of cavity quantum electrodynamics effects, which makes them prime candidates for next generation photonic neurons in neural network hardware. However, particularly for optical pumping, their power-conversion efficiency can be very low. Here we perform an in-depth experimental analysis of quantum dot microlasers and investigate their input-output relationship over a wide range of optical pumping conditions. We find that the current energy efficiency limitation is caused by disadvantageous optical pumping concepts and by a low exciton conversion efficiency. Our results indicate that for non-resonant pumping into the GaAs matrix (wetting layer), 3.4% (0.6%) of the optical pump is converted into lasing-relevant excitons, and of those only 2% (0.75%) provide gain to the lasing transition. Based on our findings, we propose to improve the pumping efficiency by orders of magnitude by increasing the aluminium content of the AlGaAs/GaAs mirror pairs in the upper Bragg reflector. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:9084 / 9097
页数:14
相关论文
共 34 条
[1]  
Agrawal G.P., 1993, SEMICONDUCTOR LASERS
[2]   Nitride Surface Passivation of GaAs Nanowires: Impact on Surface State Density [J].
Alekseev, Prokhor A. ;
Dunaevskiy, Mikhail S. ;
Ulin, Vladimir P. ;
Lvova, Tatiana V. ;
Filatov, Dmitriy O. ;
Nezhdanov, Alexey V. ;
Mashin, Aleksander I. ;
Berkovits, Vladimir L. .
NANO LETTERS, 2015, 15 (01) :63-68
[3]   OPTICAL-PROPERTIES OF ALXGA1-XAS [J].
ASPNES, DE ;
KELSO, SM ;
LOGAN, RA ;
BHAT, R .
JOURNAL OF APPLIED PHYSICS, 1986, 60 (02) :754-767
[4]   Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling [J].
Baveja, Prashant P. ;
Kogel, Benjamin ;
Westbergh, Petter ;
Gustavsson, Johan S. ;
Haglund, Asa ;
Maywar, Drew N. ;
Agrawal, Govind P. ;
Larsson, Anders .
OPTICS EXPRESS, 2011, 19 (16) :15490-15505
[5]   VCSEL Array-Based Gigabit Free-Space Optical Femtocell Communication [J].
Bialek, Hayden ;
Natarajan, Arun ;
Wang, Alan X. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (07) :1659-1667
[6]   ANALYSIS OF SEMICONDUCTOR MICROCAVITY LASERS USING RATE-EQUATIONS [J].
BJORK, G ;
YAMAMOTO, Y .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (11) :2386-2396
[7]   Reconfigurable semiconductor laser networks based on diffractive coupling [J].
Brunner, Daniel ;
Fischer, Ingo .
OPTICS LETTERS, 2015, 40 (16) :3854-3857
[8]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4
[9]   Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback [J].
Bueno, Julian ;
Brunner, Daniel ;
Soriano, Miguel C. ;
Fischer, Ingo .
OPTICS EXPRESS, 2017, 25 (03) :2401-2412
[10]   Quantum-optical influences in optoelectronics-An introduction [J].
Chow, Weng W. ;
Reitzenstein, Stephan .
APPLIED PHYSICS REVIEWS, 2018, 5 (04)