Coloring Dense Digraphs

被引:10
作者
Harutyunyan, Ararat [1 ]
Tien-Nam Le [2 ]
Newman, Alantha [3 ]
Thomasse, Stephan [2 ]
机构
[1] PSL Res Univ, Univ Paris Dauphine, CNRS, LAMSADE, F-75016 Paris, France
[2] Univ Lyon, INRIA, Lab Informat Parallelisme, UCBL,ENS Lyon,CNRS,UMR 5668, Lyon, France
[3] Univ Grenoble Alpes, CNRS, Lab G SCOP, Grenoble, France
关键词
05C15; NUMBER;
D O I
10.1007/s00493-019-3815-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The chromatic number of a digraph D is the minimum number of acyclic subgraphs covering the vertex set of D. A tournament H is a hero if every H-free tournament T has chromatic number bounded by a function of H. Inspired by the celebrated Erdos-Hajnal conjecture, Berger et al. fully characterized the class of heroes in 2013. We extend this framework to dense digraphs: A digraph H is a superhero if every H-free digraph D has chromatic number bounded by a function of H and alpha(D), the independence number of the underlying graph of D. We prove here that a digraph is a superhero if and only if it is a hero, and hence characterize all superheroes. This answers a question of Aboulker, Charbit and Naserasr.
引用
收藏
页码:1021 / 1053
页数:33
相关论文
共 14 条
[1]  
Aboulker P., COMMUNICATION
[2]   Tournaments and colouring [J].
Berger, Eli ;
Choromanski, Krzysztof ;
Chudnovsky, Maria ;
Fox, Jacob ;
Loebl, Martin ;
Scott, Alex ;
Seymour, Paul ;
Thomasse, Stephan .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2013, 103 (01) :1-20
[3]   The circular chromatic number of a digraph [J].
Bokal, D ;
Fijavz, G ;
Juvan, M ;
Kayll, PM ;
Mohar, B .
JOURNAL OF GRAPH THEORY, 2004, 46 (03) :227-240
[4]   Tournaments with near-linear transitive subsets [J].
Choromanski, Krzysztof ;
Chudnovsky, Maria ;
Seymour, Paul .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 109 :228-249
[5]   Domination in tournaments [J].
Chudnovsky, Maria ;
Kim, Ringi ;
Liu, Chun-Hung ;
Seymour, Paul ;
Thomasse, Stephan .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 130 :98-113
[6]   The Erdos-Hajnal Conjecture-A Survey [J].
Chudnovsky, Maria .
JOURNAL OF GRAPH THEORY, 2014, 75 (02) :178-190
[7]  
Harutyunyan A., LARGE ACYCLIC UNPUB
[8]  
Harutyunyan A., ARXIV170201607
[9]   Two results on the digraph chromatic number [J].
Harutyunyan, Ararat ;
Mohar, Bojan .
DISCRETE MATHEMATICS, 2012, 312 (10) :1823-1826
[10]  
Harutyunyan A, 2011, ELECTRON J COMB, V18