A new generalized volatility proxy via the stochastic volatility model

被引:1
作者
Kim, Jong-Min [1 ]
Jung, Hojin [2 ]
Qin, Li [1 ]
机构
[1] Univ Minnesota, Div Sci & Math, Stat Discipline, Morris, MN 56267 USA
[2] Henan Univ, Sch Econ, Kaifeng 475001, Henan, Peoples R China
关键词
Volatility; stochastic volatility; relative bias; mean square error;
D O I
10.1080/00036846.2016.1237751
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article proposes power transformation of absolute returns as a new proxy of latent volatility in the stochastic model. We generalize absolute returns as a proxy for volatility in that we place no restriction on the power of absolute returns. An empirical investigation on the bias, mean square error and relative bias is carried out for the proposed proxy. Simulation results show that the new estimator exhibiting negligible bias appears to be more efficient than the unbiased estimator with high variance.
引用
收藏
页码:2259 / 2268
页数:10
相关论文
共 50 条
  • [31] A New Approach to Importance Sampling in Taylor's Stochastic Volatility Model
    Sun, Bruce Qiang
    Chen, Xinfu
    Huang, Ting Ting
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (03) : 580 - 596
  • [32] The rough Hawkes Heston stochastic volatility model
    Bondi, Alessandro
    Pulido, Sergio
    Scotti, Simone
    [J]. MATHEMATICAL FINANCE, 2024, 34 (04) : 1197 - 1241
  • [33] A stochastic volatility model and optimal portfolio selection
    Zeng, Xudong
    Taksar, Michael
    [J]. QUANTITATIVE FINANCE, 2013, 13 (10) : 1547 - 1558
  • [34] Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts
    Alvaro, Dennis
    Guillen, Angel
    Rodriguez, Gabriel
    [J]. REVIEW OF WORLD ECONOMICS, 2017, 153 (01) : 71 - 103
  • [35] MULTISCALE STOCHASTIC VOLATILITY MODEL FOR DERIVATIVES ON FUTURES
    Fouque, Jean-Pierre
    Saporito, Yuri F.
    Zubelli, Jorge P.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2014, 17 (07)
  • [36] A common jump factor stochastic volatility model
    Laurini, Marcio Poletti
    Mauad, Roberto Baltieri
    [J]. FINANCE RESEARCH LETTERS, 2015, 12 : 2 - 10
  • [37] Optimal Portfolio for the α-Hypergeometric Stochastic Volatility Model
    Cipriano, Fernanda
    Martins, Nuno F. M.
    Pereira, Diogo
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2021, 12 (01): : 226 - 253
  • [38] Fair Volatility in the Fractional Stochastic Regularity Model
    Bianchi, Sergio
    Angelini, Daniele
    Frezza, Massimiliano
    Palazzo, Anna Maria
    Pianese, Augusto
    [J]. MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF2024, 2024, : 61 - 66
  • [39] On the complete model with stochastic volatility by Hobson and Rogers
    Di Francesco, M
    Pascucci, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2051): : 3327 - 3338
  • [40] Non-Gaussian stochastic volatility model with jumps via Gibbs sampler
    Rego, Arthur T.
    dos Santos, Thiago R.
    [J]. STATISTICS AND ITS INTERFACE, 2020, 13 (02) : 209 - 219