A new generalized volatility proxy via the stochastic volatility model

被引:1
|
作者
Kim, Jong-Min [1 ]
Jung, Hojin [2 ]
Qin, Li [1 ]
机构
[1] Univ Minnesota, Div Sci & Math, Stat Discipline, Morris, MN 56267 USA
[2] Henan Univ, Sch Econ, Kaifeng 475001, Henan, Peoples R China
关键词
Volatility; stochastic volatility; relative bias; mean square error;
D O I
10.1080/00036846.2016.1237751
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article proposes power transformation of absolute returns as a new proxy of latent volatility in the stochastic model. We generalize absolute returns as a proxy for volatility in that we place no restriction on the power of absolute returns. An empirical investigation on the bias, mean square error and relative bias is carried out for the proposed proxy. Simulation results show that the new estimator exhibiting negligible bias appears to be more efficient than the unbiased estimator with high variance.
引用
收藏
页码:2259 / 2268
页数:10
相关论文
共 50 条
  • [1] Estimating Stochastic Volatility under the Assumption of Stochastic Volatility of Volatility
    Alghalith, Moawia
    Floros, Christos
    Gkillas, Konstantinos
    RISKS, 2020, 8 (02)
  • [2] Fractional stochastic volatility model
    Shi, Shuping
    Liu, Xiaobin
    Yu, Jun
    JOURNAL OF TIME SERIES ANALYSIS, 2025, 46 (02) : 378 - 397
  • [3] The Jacobi stochastic volatility model
    Ackerer, Damien
    Filipovic, Damir
    Pulido, Sergio
    FINANCE AND STOCHASTICS, 2018, 22 (03) : 667 - 700
  • [4] Stochastic volatility model with filtering
    Elliott, RJ
    Miao, H
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2006, 24 (03) : 661 - 683
  • [5] The Jacobi stochastic volatility model
    Damien Ackerer
    Damir Filipović
    Sergio Pulido
    Finance and Stochastics, 2018, 22 : 667 - 700
  • [6] Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution
    Takahashi, Makoto
    Watanabe, Toshiaki
    Omori, Yasuhiro
    INTERNATIONAL JOURNAL OF FORECASTING, 2016, 32 (02) : 437 - 457
  • [7] Pricing the Volatility Risk Premium with a Discrete Stochastic Volatility Model
    Simovic, Petra Posedel
    Tafro, Azra
    MATHEMATICS, 2021, 9 (17)
  • [8] A new estimator of the fractionally integrated stochastic volatility model
    Wright, JH
    ECONOMICS LETTERS, 1999, 63 (03) : 295 - 303
  • [9] Common-factor stochastic volatility modelling with observable proxy
    Fang, Yizhou
    Lysy, Martin
    Mcleish, Don
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (01): : 36 - 61
  • [10] Hidden Markov model with stochastic volatility for estimating bitcoin price volatility
    Kang, Tae Hyun
    Hwang, Beom Seuk
    KOREAN JOURNAL OF APPLIED STATISTICS, 2023, 36 (01) : 85 - 100