GENERALIZED PROXIMAL DISTANCES FOR BILEVEL EQUILIBRIUM PROBLEMS

被引:21
作者
Bento, G. C. [1 ]
Cruz Neto, J. X. [2 ]
Lopes, J. O. [2 ]
Soares, P. A., Jr. [2 ]
Soubeyran, A. [3 ,4 ,5 ]
机构
[1] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
[2] Univ Fed Piaui, DM, CCN, BR-64049550 Teresina, PI, Brazil
[3] Aix Marseille Univ, Aix Marseille Sch Econ, Marseille, France
[4] CNRS, F-75700 Paris, France
[5] EHESS, Paris, France
关键词
equilibrium problem; bilevel problem; proximal algorithms; proximal distance; variational rationality; OPTIMIZATION PROBLEMS; CONVEX; CONVERGENCE; ALGORITHMS;
D O I
10.1137/140975589
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a bilevel problem involving two monotone equilibrium bifunctions and we show that this problem can be solved by a proximal point method with generalized proximal distances. We propose a framework for the convergence analysis of the sequence generated by the algorithm. This class of problems is very interesting because it covers mathematical programs and optimization problems under equilibrium constraints. As an application, we consider the problem of the stability and change dynamics of a leader-follower relationship in a hierarchical organization.
引用
收藏
页码:810 / 830
页数:21
相关论文
共 39 条
[1]   Well-Posedness Under Relaxed Semicontinuity for Bilevel Equilibrium and Optimization Problems with Equilibrium Constraints [J].
Anh, L. Q. ;
Khanh, P. Q. ;
Van, D. T. M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 153 (01) :42-59
[2]  
[Anonymous], 2009, PREPRINT
[3]  
[Anonymous], 2010, PREPRINT
[4]  
[Anonymous], TRANSL SER MATH ENG
[5]   COUPLING FORWARD-BACKWARD WITH PENALTY SCHEMES AND PARALLEL SPLITTING FOR CONSTRAINED VARIATIONAL INEQUALITIES [J].
Attouch, Hedy ;
Czarnecki, Marc-Olivier ;
Peypouquet, Juan .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (04) :1251-1274
[6]   PROX-PENALIZATION AND SPLITTING METHODS FOR CONSTRAINED VARIATIONAL PROBLEMS [J].
Attouch, Hedy ;
Czarnecki, Marc-Olivier ;
Peypouquet, Juan .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (01) :149-173
[7]   Interior gradient and proximal methods for convex and conic optimization [J].
Auslender, A ;
Teboulle, M .
SIAM JOURNAL ON OPTIMIZATION, 2006, 16 (03) :697-725
[8]   Coercivity conditions for equilibrium problems [J].
Bianchi, M ;
Pini, R .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 124 (01) :79-92
[9]  
Blum E., 1994, MATH STUD, V63, P127
[10]   MATHEMATICAL PROGRAMS WITH OPTIMIZATION PROBLEMS IN CONSTRAINTS [J].
BRACKEN, J ;
MCGILL, JT .
OPERATIONS RESEARCH, 1973, 21 (01) :37-44