HARDWARE-AWARE TRANSFORMABLE ARCHITECTURE SEARCH WITH EFFICIENT SEARCH SPACE

被引:7
作者
Jiang, Yuhang [1 ]
Wang, Xin [2 ]
Zhu, Wenwu [1 ,2 ]
机构
[1] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
来源
2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME) | 2020年
基金
中国国家自然科学基金;
关键词
Deep Learning; Neural Architecture Search; Transformable Architecture Search; Hardware-aware;
D O I
10.1109/icme46284.2020.9102721
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
While Neural Architecture Search (NAS) discovers the optimal topology structure, Transformable Architecture Search (TAS) aims to search for the best width and depth, which is more challenging due to the larger search space. Since FLOPs is inconsistent with the actual latency, hardware-aware TAS uses the inference latency to evaluate the efficiency. However, most existing work focuses on the search strategy, ignoring the critical role of the search space in affecting the actual efficiency. Motivated by it, we study hardware-aware TAS by considering the search space, to the best of our knowledge, for the first time. We propose a hardware-aware transformable architecture search (HTAS) framework to discover the optimal architecture for different hardware. The core of our method is a novel hardware-aware search space, which provides efficient channel choices for the search strategy to sample efficient architectures. Experiments on CIFAR datasets demonstrate the superiority of HTAS over the state-of-the-art method.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Hyperscale Hardware Optimized Neural Architecture Search [J].
Li, Sheng ;
Andersen, Garrett ;
Chen, Tao ;
Cheng, Liqun ;
Grady, Julian ;
Da Huang ;
Le, Quoc V. ;
Li, Andrew ;
Li, Xin ;
Li, Yang ;
Liang, Chen ;
Lu, Yifeng ;
Ni, Yun ;
Pang, Ruoming ;
Tan, Mingxing ;
Wicke, Martin ;
Wu, Gang ;
Zhu, Shengqi ;
Ranganathan, Parthasarathy ;
Jouppi, Norman P. .
PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, VOL 3, ASPLOS 2023, 2023, :343-358
[22]   HAW: Hardware-Aware Point Selection for Efficient Winograd Convolution [J].
Li, Chaoran ;
Jiang, Penglong ;
Zhou, Hui ;
Wang, Xiaofeng ;
Zhao, Xiongbo .
IEEE SIGNAL PROCESSING LETTERS, 2023, 30 :269-273
[23]   HARDWARE-AWARE MOTION ESTIMATION SEARCH ALGORITHM DEVELOPMENT FOR HIGH-EFFICIENCY VIDEO CODING (HEVC) STANDARD [J].
Sinangil, Mahmut E. ;
Chandrakasan, Anantha P. ;
Sze, Vivienne ;
Zhou, Minhua .
2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, :1529-1532
[24]   Efficient Search for Efficient Architecture [J].
Liao, Liewen ;
Wang, Yaoming ;
Li, Hao ;
Dai, Wenrui ;
Li, Chenglin ;
Zou, Junni ;
Xiong, Hongkai .
2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, :3140-3144
[25]   Efficient Global Neural Architecture Search [J].
Shahid Siddiqui ;
Christos Kyrkou ;
Theocharis Theocharides .
SN Computer Science, 6 (3)
[26]   Semi-supervised transformable architecture search for feature distillation [J].
Zhang, Man ;
Zhou, Yong ;
Liu, Bing ;
Zhao, Jiaqi ;
Yao, Rui ;
Shao, Zhiwen ;
Zhu, Hancheng ;
Chen, Hao .
PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) :669-677
[27]   Hardware-Aware design for edge intelligence [J].
Gross W.J. ;
Meyer B.H. ;
Ardakani A. .
IEEE Open Journal of Circuits and Systems, 2021, 2 :113-127
[28]   Discretization-aware architecture search [J].
Tian, Yunjie ;
Liu, Chang ;
Xie, Lingxi ;
Jiao, Jianbin ;
Ye, Qixiang .
PATTERN RECOGNITION, 2021, 120
[29]   Semi-supervised transformable architecture search for feature distillation [J].
Man Zhang ;
Yong Zhou ;
Bing Liu ;
Jiaqi Zhao ;
Rui Yao ;
Zhiwen Shao ;
Hancheng Zhu ;
Hao Chen .
Pattern Analysis and Applications, 2023, 26 :669-677
[30]   Neural Architecture Search and Hardware Accelerator Co-Search: A Survey [J].
Sekanina, Lukas .
IEEE ACCESS, 2021, 9 :151337-151362