HARDWARE-AWARE TRANSFORMABLE ARCHITECTURE SEARCH WITH EFFICIENT SEARCH SPACE

被引:7
作者
Jiang, Yuhang [1 ]
Wang, Xin [2 ]
Zhu, Wenwu [1 ,2 ]
机构
[1] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
来源
2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME) | 2020年
基金
中国国家自然科学基金;
关键词
Deep Learning; Neural Architecture Search; Transformable Architecture Search; Hardware-aware;
D O I
10.1109/icme46284.2020.9102721
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
While Neural Architecture Search (NAS) discovers the optimal topology structure, Transformable Architecture Search (TAS) aims to search for the best width and depth, which is more challenging due to the larger search space. Since FLOPs is inconsistent with the actual latency, hardware-aware TAS uses the inference latency to evaluate the efficiency. However, most existing work focuses on the search strategy, ignoring the critical role of the search space in affecting the actual efficiency. Motivated by it, we study hardware-aware TAS by considering the search space, to the best of our knowledge, for the first time. We propose a hardware-aware transformable architecture search (HTAS) framework to discover the optimal architecture for different hardware. The core of our method is a novel hardware-aware search space, which provides efficient channel choices for the search strategy to sample efficient architectures. Experiments on CIFAR datasets demonstrate the superiority of HTAS over the state-of-the-art method.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Evolution of Hardware-Aware Neural Architecture Search on the Edge [J].
Richey, Blake ;
Clay, Mitchell ;
Grecos, Christos ;
Shirvaikar, Mukul .
REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2023, 2023, 12528
[2]   One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search [J].
Lu, Bingqian ;
Yang, Jianyi ;
Jiang, Weiwen ;
Shi, Yiyu ;
Ren, Shaolei .
PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2021, 5 (03)
[3]   Hardware-Aware and Efficient Feature Fusion Network Search [J].
Guo J.-M. ;
Zhang R. ;
Zhi T. ;
He D.-Y. ;
Huang D. ;
Chang M. ;
Zhang X.-S. ;
Guo Q. .
Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (11) :2420-2432
[4]   Hardware-Aware Bayesian Neural Architecture Search of Quantized CNNs [J].
Perrin, Mathieu ;
Guicquero, William ;
Paille, Bruno ;
Sicard, Gilles .
IEEE EMBEDDED SYSTEMS LETTERS, 2025, 17 (01) :42-45
[5]   Pareto Rank Surrogate Model for Hardware-aware Neural Architecture Search [J].
Benmeziane, Hadjer ;
Niar, Smail ;
Ouarnoughi, Hamza ;
El Maghraoui, Kaoutar .
2022 IEEE INTERNATIONAL SYMPOSIUM ON PERFORMANCE ANALYSIS OF SYSTEMS AND SOFTWARE (ISPASS 2022), 2022, :267-276
[6]   Facilitating hardware-aware neural architecture search with learning-based predictive models [J].
Wang, Xueying ;
Li, Guangli ;
Ma, Xiu ;
Feng, Xiaobing .
JOURNAL OF SYSTEMS ARCHITECTURE, 2023, 137
[7]   HADAS: Hardware-Aware Dynamic Neural Architecture Search for Edge Performance Scaling [J].
Bouzidi, Halima ;
Odema, Mohanad ;
Ouarnoughi, Hamza ;
Al Faruque, Mohammad Abdullah ;
Niar, Smail .
2023 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2023,
[8]   Hardware-Aware Iterative One-Shot Neural Architecture Search With Adaptable Knowledge Distillation for Efficient Edge Computing [J].
Chen, Oscal Tzyh-Chiang ;
Chang, Yu-Xuan ;
Chung, Chih-Yu ;
Cheng, Ya-Yun ;
Ha, Manh-Hung .
IEEE ACCESS, 2025, 13 :54204-54222
[9]   SARNas: A Hardware-Aware SAR Target Detection Algorithm via Multiobjective Neural Architecture Search [J].
Du, Wentian ;
Chen, Jie ;
Zhang, Chaochen ;
Zhao, Po ;
Wan, Huiyao ;
Zhou, Zheng ;
Cao, Yice ;
Huang, Zhixiang ;
Li, Yingsong ;
Wu, Bocai .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[10]   SARNAS: A HARDWARE-AWARE SAR TARGET DETECTION ALGORITHM VIA MULTI-OBJECTIVE NEURAL ARCHITECTURE SEARCH [J].
Du, Wentian ;
Chen, Jie ;
Huang, Zhixiang .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :5269-5272