Sharp weighted weak type (∞, ∞) inequality for differentially subordinate martingales

被引:0
作者
Brzozowski, Michal [1 ]
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Dept Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
Martingale; Weight; Burkholder's function;
D O I
10.1016/j.spl.2019.108561
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X = (X-t)(t >= 0) be a bounded, continuous-path martingale and Y = (Y-t)(t >= 0) be a martingale that is differentially subordinate to X. We prove that if W is an A(infinity) weight of characteristic [W](A infinity), then such that parallel to Y parallel to(weak(W)) <= 97[W](A infinity) parallel to X parallel to(infinity). Here weak(W) is the weak-L-infinity space introduced by Bennett, DeVore and Sharpley. The linear dependence on [W](A infinity) is shown to be best possible. The proof exploits certain special functions enjoying appropriate size conditions and concavity. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
[21]   A UNIFIED VERSION OF WEIGHTED WEAK TYPE INEQUALITY FOR MARTINGALE MAXIMAL OPERATORS [J].
Ren, Yanbo ;
Ma, Congbian .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2021, 58 (02) :216-229
[22]   Weak type inequalities for conditionally symmetric martingales [J].
Osekowski, Adam .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (23-24) :2009-2013
[23]   Doob-Type Estimates for Differentially Subordinated Martingales [J].
Osekowski, Adam .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2012, 30 (03) :426-447
[24]   TWO-WEIGHT WEAK-TYPE MAXIMAL INEQUALITIES FOR MARTINGALES [J].
任颜波 ;
侯友良 .
ActaMathematicaScientia, 2009, 29 (02) :402-408
[25]   TWO-WEIGHT WEAK-TYPE MAXIMAL INEQUALITIES FOR MARTINGALES [J].
Ren Yanbo ;
Hou Youliang .
ACTA MATHEMATICA SCIENTIA, 2009, 29 (02) :402-408
[26]   Sharp weighted weak-norm estimates for maximal functions [J].
Brzozowski, Michal ;
Osekowski, Adam ;
Rapicki, Mateusz .
STATISTICS & PROBABILITY LETTERS, 2017, 131 :93-101
[27]   A weak-L∞ inequality for weakly dominated martingales with applications to Haar shift operators [J].
Akboudj, Meryem ;
Jiao, Yong ;
Osekowski, Adam .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (02)
[28]   Sharp weak type estimates for Riesz transforms [J].
Adam Osȩkowski .
Monatshefte für Mathematik, 2014, 174 :305-327
[29]   Sharp weak type estimates for Riesz transforms [J].
Osekowski, Adam .
MONATSHEFTE FUR MATHEMATIK, 2014, 174 (02) :305-327
[30]   A weak-type inequality for the martingale square function [J].
Osekowski, Adam .
STATISTICS & PROBABILITY LETTERS, 2014, 95 :139-143