Painting chaos: A gallery of sensitivity plots of classical problems

被引:31
作者
Barrio, Roberto [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Grp Mecan Espacial, E-50009 Zaragoza, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2006年 / 16卷 / 10期
关键词
chaos indicators; OFLITT2; Taylor method;
D O I
10.1142/S021812740601646X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study briefly several chaos indicators and we focus our attention oil the recently developed OFLITT2, presenting a numerical scheme for its calculation based on the Taylor method. Using this new indicator we present several sensitivity plots for several classical problems: the Hydrogen Atom in a magnetic field, an Extensible Pendulum, the Heavy Top, the (N + 1)-body Ring problem and the Duffing-Oscillator. Most of these plots are new and they provide a global picture of the evolution of such a dynamical system. Besides, we show OFLITT2 plots of variations in the parameters of the problem, giving a new perspective of the evolution of the problem.
引用
收藏
页码:2777 / 2798
页数:22
相关论文
共 39 条
[1]   Bifurcations and equilibria in the extended N-body ring problem [J].
Arribas, M ;
Elipe, A .
MECHANICS RESEARCH COMMUNICATIONS, 2004, 31 (01) :1-8
[2]   A direct numerical method for quantifying regular and chaotic orbits [J].
Awrejcewicz, J ;
Dzyubak, L ;
Grebogi, C .
CHAOS SOLITONS & FRACTALS, 2004, 19 (03) :503-507
[3]   Sensitivity analysis of ODEs/DAEs using the Taylor series method [J].
Barrio, R .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (06) :1929-1947
[4]   Sensitivity tools vs. Poincare sections [J].
Barrio, R .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :711-726
[5]   VSVO formulation of the Taylor method for the numerical solution of ODEs [J].
Barrio, R ;
Blesa, F ;
Lara, M .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (1-2) :93-111
[6]   Performance of the Taylor series method for ODEs/DAEs [J].
Barrio, R .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (02) :525-545
[7]  
BROUCKE RA, 1993, J ASTRONAUT SCI, V41, P593
[8]  
Carretero-Gonzalez R., 1994, European Journal of Physics, V15, P139, DOI 10.1088/0143-0807/15/3/009
[9]   Time-frequency analysis of chaotic systems [J].
Chandre, C ;
Wiggins, S ;
Uzer, T .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 181 (3-4) :171-196
[10]   Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits [J].
Cincotta, PM ;
Giordana, CM ;
Simó, C .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 182 (3-4) :151-178