Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting

被引:63
作者
Zhou, Zhi [1 ]
Bowland, Christopher C. [1 ]
Malakooti, Mohammad H. [2 ]
Tang, Haixiong [1 ]
Sodano, Henry A. [2 ,3 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
关键词
NANOCOMPOSITE; WIRELESS; NANOGENERATORS; ARRAYS;
D O I
10.1039/c5nr09029f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O-3-0.5(Ba0.7Ca0.3)TiO3 (BZTBCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 +/- 5 pm V-1. Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 mu W cm(-3). The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices.
引用
收藏
页码:5098 / 5105
页数:8
相关论文
共 42 条
[1]  
[Anonymous], 2014, ADV MATER
[2]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[3]   Piezoelectric and ferroelectric materials and structures for energy harvesting applications [J].
Bowen, C. R. ;
Kim, H. A. ;
Weaver, P. M. ;
Dunn, S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :25-44
[4]   Measurement techniques for piezoelectric nanogenerators [J].
Briscoe, Joe ;
Jalali, Nimra ;
Woolliams, Peter ;
Stewart, Mark ;
Weaver, Paul M. ;
Cainb, Markys ;
Dunn, Steve .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (10) :3035-3045
[5]   A coupled piezoelectric-electromagnetic energy harvesting technique for achieving increased power output through damping matching [J].
Challa, Vinod R. ;
Prasad, M. G. ;
Fisher, Frank T. .
SMART MATERIALS & STRUCTURES, 2009, 18 (09)
[6]  
Chandrasekhar VR, 2010, WIRELESS SENSOR NETWORKS: APPLICATION-CENTRIC DESIGN, P321
[7]   REACTION-MECHANISMS IN THE FORMATION OF LEAD ZIRCONATE-TITANATE SOLID-SOLUTIONS UNDER HYDROTHERMAL CONDITIONS [J].
CHENG, HM ;
MA, JM ;
ZHU, B ;
CUI, YH .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1993, 76 (03) :625-629
[8]   Wireless, power-free and implantable nanosystem for resistance-based biodetection [J].
Cheng, Li ;
Yuan, Miaomiao ;
Gu, Long ;
Wang, Zhe ;
Qin, Yong ;
Jing, Tao ;
Wang, Zhong Lin .
NANO ENERGY, 2015, 15 :598-606
[9]   Interface Optimization and Electrical Properties of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 Thin Films Prepared by a Sol-Gel Process [J].
Chi, Q. G. ;
Zhang, C. H. ;
Sun, J. ;
Yang, F. Y. ;
Wang, X. ;
Lei, Q. Q. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (28) :15220-15225
[10]   Hydrothennal synthesis and characterization of nanocrystalline PZT powders [J].
Deng, Y ;
Liu, L ;
Cheng, Y ;
Nan, CW ;
Zhao, SJ .
MATERIALS LETTERS, 2003, 57 (11) :1675-1678