PATTERN FORMATION IN A GENERAL DEGN-HARRISON REACTION MODEL

被引:4
作者
Zhou, Jun [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国博士后科学基金;
关键词
Degn-Harrison reaction model; pattern formation; Turing instability; Hopf bifurcation; REACTION-DIFFUSION MODEL; PREDATOR-PREY SYSTEM; SPATIOTEMPORAL PATTERNS; REACTION SCHEME; BIFURCATION;
D O I
10.4134/BKMS.b160249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the pattern formation to a general Degn-Harrison reaction model. We show Turing instability happens by analyzing the stability of the unique positive equilibrium with respect to the PDE model and the corresponding ODE model, which indicate the existence of the non-constant steady state solutions. We also show the existence periodic solutions of the PDE model and the ODE model by using Hopf bifurcation theory. Numerical simulations are presented to verify and illustrate the theoretical results.
引用
收藏
页码:655 / 666
页数:12
相关论文
共 9 条
  • [1] [Anonymous], 1981, THEORY APPL HOPF BIF, DOI DOI 10.1090/CONM/445
  • [2] THEORY OF OSCILLATIONS OF RESPIRATION RATE IN CONTINUOUS CULTURE OF KLEBSIELLA AEROGENES
    DEGN, H
    HARRISON, DE
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1969, 22 (02) : 238 - &
  • [3] Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme
    Li, Shanbing
    Wu, Jianhua
    Doug, Yaying
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (05) : 1990 - 2029
  • [4] Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme
    Peng, Rui
    Yi, Feng-qi
    Zhao, Xiao-qiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (06) : 2465 - 2498
  • [6] Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey
    Wang, Jinfeng
    Shi, Junping
    Wei, Junjie
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) : 1276 - 1304
  • [7] Wiggins S., 2003, Texts Appl. Math., V2, DOI DOI 10.1007/978-1-4757-4067-7
  • [8] Diffusion-driven instability and bifurcation in the Lengyel-Epstein system
    Yi, Fengqi
    Wei, Junjie
    Shi, Junping
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (03) : 1038 - 1051
  • [9] Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system
    Yi, Fengqi
    Wei, Junjie
    Shi, Junping
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (05) : 1944 - 1977