TOO MUCH REGULARITY MAY FORCE TOO MUCH UNIQUENESS

被引:124
作者
Stynes, Martin [1 ]
机构
[1] Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional heat equation; fractional wave equation; regularity of solution; FRACTIONAL DIFFUSION EQUATION; WAVE EQUATIONS;
D O I
10.1515/fca-2016-0080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Time-dependent fractional-derivative problems Dt alpha u+Au= f are considered, where D-t(alpha) t is a Caputo fractional derivative of order a. (0, 1).(1, 2) and A is a classical elliptic operator, and appropriate boundary and initial conditions are applied. The regularity of solutions to this class of problems is discussed, and it is shown that assuming more regularity than is generally true-as many researchers do-places a surprisingly severe restriction on the problem.
引用
收藏
页码:1554 / 1562
页数:9
相关论文
共 15 条
[1]  
Al-Refai M, 2012, ELECTRON J QUAL THEO, P1
[2]   FRACTIONAL-IN-TIME AND MULTIFRACTIONAL-IN-SPACE STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS [J].
Anh, Vo V. ;
Leonenko, Nikolai N. ;
Ruiz-Medina, Maria D. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (06) :1434-1459
[3]   Convolution quadrature time discretization of fractional diffusion-wave equations [J].
Cuesta, E ;
Lubich, C ;
Palencia, C .
MATHEMATICS OF COMPUTATION, 2006, 75 (254) :673-696
[4]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+
[5]   TWO FULLY DISCRETE SCHEMES FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS WITH NONSMOOTH DATA [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01) :A146-A170
[6]   Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Pasciak, Joseph ;
Zhou, Zhi .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) :561-582
[7]   MODELING OF FINANCIAL PROCESSES WITH A SPACE-TIME FRACTIONAL DIFFUSION EQUATION OF VARYING ORDER [J].
Korbel, Jan ;
Luchko, Yuri .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (06) :1414-1433
[8]   Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation [J].
Li, Xianjuan ;
Xu, Chuanju .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 8 (05) :1016-1051
[9]   Finite difference/spectral approximations for the time-fractional diffusion equation [J].
Lin, Yumin ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :1533-1552
[10]   INITIAL-BOUNDARY-VALUE PROBLEMS FOR THE ONE-DIMENSIONAL TIME-FRACTIONAL DIFFUSION EQUATION [J].
Luchko, Yuri .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (01) :141-160