Reliability Improvement of Odour Detection Thresholds Bibliographic Data

被引:0
|
作者
Montreer, Pascale [1 ]
Janaqi, Stefan [2 ]
Cariou, Stephane [1 ]
Chaignaud, Mathilde [3 ]
Betremieux, Isabelle [4 ]
Ricoux, Philippe [4 ]
Picard, Frederic [5 ]
Sirol, Sabine [6 ]
Assumani, Budagwa [6 ]
Fanlo, Jean-Louis [1 ,3 ]
机构
[1] IMT Mines Ales, LGEI Lab, 6 Ave Clavieres, F-30100 Ales, France
[2] IMT Mines Ales, LGI2P Lab, 6 Ave Clavieres, F-30100 Ales, France
[3] Olentica SAS, 17 Rue Charles Peguy, F-30100 Ales, France
[4] Total SA, 2 Pl Jean Millier,La Def 6, F-92078 Paris, France
[5] Hutchinson SA, Rue Gustave Nourry, F-45120 Chalette Sur Loing, France
[6] Total Feluy, B-7181 Seneffe, Belgium
关键词
Odour Detection Thresholds (ODT); Data mining; Reliability; Completeness; Uncertainty;
D O I
10.1007/978-3-319-91473-2_48
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Odour control is an important industrial issue as it is a criterion in purchase of a material. The minimal concentration of a pure compound allowing to perceive its odour, called Odour Detection Threshold (ODT), is a key of the odour control. Each compound has its own ODT. Literature is the main source to obtain ODT, but a lot of compounds are not reported and, when reported, marred by a high variability. This paper proposes a supervised cleaning methodology to reduce uncertainty of available ODTs and a prediction of missing ODTs on the base of physico-chemical variables. This cleaning leads to eliminate 39% of reported compounds while conducting 84% of positive scenarios on 37 comparisons. Missing ODTs are predicted with an error of 0.83 for the train and 1.14 for the test (log10 scale). Given the uncertainty of data, the model is sufficient. This approach allows working with a lower uncertainty and satisfactory prediction of missing ODTs.
引用
收藏
页码:562 / 573
页数:12
相关论文
共 50 条
  • [31] The Improvement of Medical Library Bibliographic Service
    Cunningham, Eileen R.
    JOURNAL OF MEDICAL EDUCATION, 1955, 30 (09): : 518 - 526
  • [32] New reliability data processing methods for maintenance improvement
    Righini, R
    Bottazzi, A
    Cobopoulos, Y
    Fichera, C
    Minak, G
    Perasso, L
    SAFETY AND RELIABILITY, VOLS 1 & 2, 1999, : 1095 - 1100
  • [33] A novel data pre-processing method for odour detection and identification system
    Zhang, Wentian
    Liu, Taoping
    Ye, Lin
    Ueland, Maiken
    Forbes, Shari L.
    Su, Steven W.
    SENSORS AND ACTUATORS A-PHYSICAL, 2019, 287 : 113 - 120
  • [34] A Survey on Odour Detection Sensors
    Aeloor, Deepak
    Patil, Neeta
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON INVENTIVE SYSTEMS AND CONTROL (ICISC 2017), 2017, : 233 - 237
  • [35] Assessment of reliability of microarray data and estimation of signal thresholds using mixture modeling
    Asyali, MH
    Shoukri, MM
    Demirkaya, O
    Khabar, KSA
    NUCLEIC ACIDS RESEARCH, 2004, 32 (08) : 2323 - 2335
  • [36] A new approach to odour detection
    Kaipainen, A
    Ylisuutari, S
    Lucas, Q
    Moy, L
    INTERNATIONAL SUGAR JOURNAL, 1997, 99 (1184): : 403 - 408
  • [37] Improving odour detection by assessors
    MacRae, AW
    Farrimond, M
    Hodsoll, J
    Falahee, M
    Simms, J
    Hopper, R
    WATER SCIENCE AND TECHNOLOGY, 1999, 40 (06) : 149 - 152
  • [38] Reliability of visual temporal thresholds
    Brown, L. N.
    Eliasziw, M.
    Metz, L. M.
    CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES, 2007, 34 (04) : 433 - 437
  • [39] Reliability of assessments of ventilatory thresholds
    Prud'Homme, D.
    Bouchard, C.
    Leblance, C.
    Landry, F.
    Lortie, G.
    Boulay, M. R.
    JOURNAL OF SPORTS SCIENCES, 1984, 2 (01) : 13 - 24
  • [40] Does odour cross contamination alter olfactory thresholds in certain odours?
    Gaskin, J. A.
    Robinson, A. M.
    Philpott, C. M.
    Goodenough, P. C.
    Clark, A.
    Murty, G. E.
    RHINOLOGY, 2008, 46 (03) : 166 - 169