Tight-binding approach to overdamped Brownian motion on a bichromatic periodic potential

被引:4
|
作者
Nguyen, P. T. T. [1 ,2 ]
Challis, K. J. [1 ]
机构
[1] Scion, Private Bag 3020, Rotorua 3046, New Zealand
[2] Univ Otago, Dept Phys, POB 56, Dunedin 9054, New Zealand
关键词
BACTERIAL FLAGELLAR MOTOR; HAND-OVER-HAND; MOLECULAR MOTORS; MYOSIN-V; KINETIC-MODELS; STEPS; PROCESSIVITY; EFFICIENCY; KRAMERS; WALKS;
D O I
10.1103/PhysRevE.93.022124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a theoretical treatment of overdamped Brownian motion on a time-independent bichromatic periodic potential with spatially fast- and slow-changing components. In our approach, we generalize the Wannier basis commonly used in the analysis of periodic systems to define a basis of S states that are localized at local minima of the potential. We demonstrate that the S states are orthonormal and complete on the length scale of the periodicity of the fast- changing potential, and we use the S-state basis to transform the continuous Smoluchowski equation for the system to a discrete master equation describing hopping between local minima. We identify the parameter regime where the master equation description is valid and show that the interwell hopping rates are well approximated by Kramers' escape rate in the limit of deep potential minima. Finally, we use the master equation to explore the system dynamics and determine the drift and diffusion for the system.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] MOTION OF BROWNIAN PARTICLE IN A PERIODIC POTENTIAL
    GOLDSTEIN, M
    JOURNAL OF CHEMICAL PHYSICS, 1963, 39 (01): : 243 - &
  • [22] Nonergodicity of Brownian motion in a periodic potential
    Lu Hong
    Qin Li
    Bao Jing-Dong
    ACTA PHYSICA SINICA, 2009, 58 (12) : 8127 - 8133
  • [23] Time scales of overdamped nonlinear Brownian motion in arbitrary potential profiles
    Malakhov, AN
    CHAOS, 1997, 7 (03) : 488 - 504
  • [24] Spectral characteristics of overdamped brownian motion in randomly switching bistable potential
    Dubkov, Alexander A.
    Ganin, Vitaly N.
    NOISE AND FLUCTUATIONS, 2007, 922 : 519 - +
  • [25] A tight-binding potential for helium in carbon systems
    Granot, Rebecca
    Baer, Roi
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (21):
  • [26] Smoluchowski equation approach for quantum Brownian motion in a tilted periodic potential
    Coffey, William T.
    Kalmykov, Yuri P.
    Titov, Serguey V.
    Cleary, Liam
    PHYSICAL REVIEW E, 2008, 78 (03)
  • [27] TIGHT-BINDING QUASIPARTICLE MOTION IN A POISSON CORRELATED DISCRETE STOCHASTIC POTENTIAL - THE DENSITY OF STATES
    BEHN, U
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1982, 113 (01): : 219 - 226
  • [28] Tight-binding approach to uniaxial strain in graphene
    Pereira, Vitor M.
    Castro Neto, A. H.
    Peres, N. M. R.
    PHYSICAL REVIEW B, 2009, 80 (04)
  • [29] Tight-binding approach to penta-graphene
    T. Stauber
    J. I. Beltrán
    J. Schliemann
    Scientific Reports, 6
  • [30] Wannier functions of cumulene: A tight-binding approach
    Ribeiro, Allan V.
    Nacbar, Denis R.
    Bruno-Alfonso, Alexys
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (03): : 545 - 553