Synchronization of Chaotic Systems with Time Delays via Periodically Intermittent Control

被引:8
作者
Liu, Chao [1 ,2 ]
Yang, Zheng [2 ]
Sun, Dihua [3 ]
Liu, Xiaoyang [2 ]
Liu, Wanping [2 ]
机构
[1] Chongqing Univ, Postdoctoral Res Stn Control Sci & Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ Technol, Sch Comp Sci & Engn, Chongqing 400054, Peoples R China
[3] Chongqing Univ, Coll Automat, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Synchronization; chaotic system; intermittent control; time delay; NEURAL-NETWORKS; SLIDING MODE; EXPONENTIAL SYNCHRONIZATION; QUASI-SYNCHRONIZATION; DYNAMICAL NETWORKS;
D O I
10.1142/S0218126617501390
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the exponential synchronization of chaotic systems with time delays via periodically intermittent control. Under the new differential inequality, some novel synchronization criteria are derived. In contrast to the existing works, the proposed results are less conservative because they can obtain more precise synchronized rate under the identical control conditions and remove the restrictions on the control period (or the control width) and the time delay. By using special parameters, the feasible region Dd(xi), which guarantees the response system synchronizes with the drive system with synchronized rate 0: 5 xi, is obtained. The Lu chaotic attractor and a first-order chaotic system with time delay are presented to demonstrate the effectiveness of the proposed results.
引用
收藏
页数:20
相关论文
共 29 条
[1]  
Banerjee T., 2012, P 2012 NAT C EL COMM, P153
[2]   Exponential synchronization of chaotic systems with time-varying delays and parameter mismatches via intermittent control [J].
Cai, Shuiming ;
Hao, Junjun ;
Liu, Zengrong .
CHAOS, 2011, 21 (02)
[3]   Exponential synchronization of complex delayed dynamical networks via pinning periodically intermittent control [J].
Cai, Shuiming ;
Hao, Junjun ;
He, Qinbin ;
Liu, Zengrong .
PHYSICS LETTERS A, 2011, 375 (19) :1965-1971
[4]   New results on synchronization of chaotic systems with time-varying delays via intermittent control [J].
Cai, Shuiming ;
Hao, Junjun ;
He, Qinbin ;
Liu, Zengrong .
NONLINEAR DYNAMICS, 2012, 67 (01) :393-402
[5]   Exponential synchronization of complex networks with nonidentical time-delayed dynamical nodes [J].
Cai, Shuiming ;
He, Qinbin ;
Hao, Junjun ;
Liu, Zengrong .
PHYSICS LETTERS A, 2010, 374 (25) :2539-2550
[6]  
Guan XP., 2002, CHAOS CONTROL ITS AP
[7]   Exponential lag synchronization for neural networks with mixed delays via periodically intermittent control [J].
Hu, Cheng ;
Yu, Juan ;
Jiang, Haijun ;
Teng, Zhidong .
CHAOS, 2010, 20 (02)
[8]   Lag quasisynchronization of coupled delayed systems with parameter mismatch by periodically intermittent control [J].
Huang, Junjian ;
Li, Chuandong ;
Huang, Tingwen ;
Han, Qi .
NONLINEAR DYNAMICS, 2013, 71 (03) :469-478
[9]   Hybrid synchronization of hyperchaotic CAI systems via sliding mode control [J].
Khan, A. ;
Prasad, R. P. .
JOURNAL OF ENGINEERING THERMOPHYSICS, 2016, 25 (01) :151-157
[10]   Synchronization of Chaos in Nonlinear Finance System by means of Sliding Mode and Passive Control Methods: A Comparative Study [J].
Kocamaz, Ugur Erkin ;
Goksu, Alper ;
Taskin, Harun ;
Uyaroglu, Yilmaz .
INFORMATION TECHNOLOGY AND CONTROL, 2015, 44 (02) :172-181