Random rewards, fractional Brownian local times and stable self-similar processes

被引:23
作者
Cohen, Serge
Samorodnitsky, Gennady
机构
[1] Univ Toulouse 3, Inst Math, Lab Stat & Probabil, F-31062 Toulouse, France
[2] Cornell Univ, Sch Operat Res & Ind Engn, Ithaca, NY 14853 USA
关键词
stable process; self-similar process; stationary process; integral representation; conservative flow; null flow; fractional Brownian motion; local time; random reward; chaos expansion; superposition of scaled inputs; long memory;
D O I
10.1214/105051606000000277
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a new class of self-similar symmetric a-stable processes with stationary increments arising as a large time scale limit in a situation where many users are earning random rewards or incurring random costs. The resulting models are different from the ones studied earlier both in their memory properties and smoothness of the sample paths.
引用
收藏
页码:1432 / 1461
页数:30
相关论文
共 39 条
[1]  
Aaronson J., 1997, INTRO INFINITE ERGOD
[2]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[3]  
[Anonymous], 1985, ERGODIC THEOREMS, DOI DOI 10.1515/9783110844641
[4]   LOCAL NONDETERMINISM AND LOCAL TIMES OF GAUSSIAN PROCESSES [J].
BERMAN, SM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 23 (01) :69-94
[5]  
BILLINGSLEY P., 1999, Convergence of Probability Measures, V2nd, DOI 10.1002/9780470316962
[7]  
CSORGO M, 1995, STOCH PROC APPL, V58, P1, DOI 10.1016/0304-4149(94)00012-I
[8]   Limit behavior of fluid queues and networks [J].
D'Auria, B ;
Samorodnitsky, G .
OPERATIONS RESEARCH, 2005, 53 (06) :933-945
[9]   SAMPLE FUNCTIONS OF GAUSSIAN PROCESS [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1973, 1 (01) :66-103
[10]   Regularity of the local time for the d-dimensional fractional Brownian motion with N-parameters [J].
Eddahbi, M ;
Lacayo, R ;
Solé, JL ;
Vives, J ;
Tudor, CA .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (02) :383-400