Ability of LIGO and LISA to probe the equation of state of the early Universe

被引:68
作者
Figueroa, Daniel G. [1 ]
Tanin, Erwin H. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Phys, Lab Particle Phys & Cosmol, CH-1015 Lausanne, Switzerland
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2019年 / 08期
基金
瑞士国家科学基金会;
关键词
physics of the early universe; primordial gravitational waves (theory); gravitational wave detectors; inflation; GRAVITATIONAL-WAVES; INFLATION; GRAVITONS; CREATION; ORIGIN;
D O I
10.1088/1475-7516/2019/08/011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The expansion history of the Universe between the end of inflation and the onset of radiation-domination (RD) is currently unknown. If the equation of state during this period is stiffer than that of radiation, w > 1/3, the gravitational wave (GW) background from inflation acquires a blue-tilt d log rho GW/d log f = 2(w-1/3)/(w+1/3) > 0 at frequencies f >> f(RD) corresponding to modes re-entering the horizon during the stiff-domination (SD), where f(RD) is the frequency today of the horizon scale at the SD-to-RD transition. We characterized in detail the transfer function of the GW energy density spectrum, considering both 'instant' and smooth modelings of the SD-to-RD transition. The shape of the spectrum is controlled by w, f(RD), and H-inf (the Hubble scale of inflation). We determined the parameter space compatible with a detection of this signal by LIGO and LISA, including possible changes in the number of relativistic degrees of freedom, and the presence of a tensor tilt. Consistency with upper bounds on stochastic GW backgrounds, however, rules out a significant fraction of the observable parameter space. We find that this renders the signal unobservable by Advanced LIGO, in all cases. The GW background remains detectable by LISA, though only in a small island of parameter space, corresponding to scenarios with an equation of state in the range 0.46 less than or similar to w less than or similar to 0.56 and a high inflationary scale H-inf greater than or similar to 10(13) GeV, but low reheating temperature 1 MeV less than or similar to T-RD less than or similar to 150 MeV (equivalently, 10(-11) Hz less than or similar to f(RD) less than or similar to 3.6.10(-9) Hz). Implications for early Universe scenarios resting upon an SD epoch are briefly discussed.
引用
收藏
页数:35
相关论文
共 69 条
[61]   TENSOR PERTURBATIONS IN INFLATIONARY MODELS AS A PROBE OF COSMOLOGY [J].
TURNER, MS ;
WHITE, M ;
LIDSEY, JE .
PHYSICAL REVIEW D, 1993, 48 (10) :4613-4622
[62]   COHERENT SCALAR-FIELD OSCILLATIONS IN AN EXPANDING UNIVERSE [J].
TURNER, MS .
PHYSICAL REVIEW D, 1983, 28 (06) :1243-1247
[63]   Improved calculation of the primordial gravitational wave spectrum in the standard model [J].
Watanabe, Yuki ;
Komatsu, Eiichiro .
PHYSICAL REVIEW D, 2006, 73 (12)
[64]   Damping of tensor modes in cosmology [J].
Weinberg, S .
PHYSICAL REVIEW D, 2004, 69 (02)
[65]   Inflation, quintessence, and the origin of mass [J].
Wetterich, C. .
NUCLEAR PHYSICS B, 2015, 897 :111-178
[66]   Variable gravity Universe [J].
Wetterich, C. .
PHYSICAL REVIEW D, 2014, 89 (02)
[67]   Relic gravitational waves in the accelerating Universe [J].
Zhang, Y ;
Yuan, YF ;
Zhao, W ;
Chen, YT .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (07) :1383-1394
[68]   Constraints of relic gravitational waves by pulsar timing arrays: Forecasts for the FAST and SKA projects [J].
Zhao, Wen ;
Zhang, Yang ;
You, Xiao-Peng ;
Zhu, Zong-Hong .
PHYSICAL REVIEW D, 2013, 87 (12)
[69]   Constraint on the early Universe by relic gravitational waves: From pulsar timing observations [J].
Zhao, Wen .
PHYSICAL REVIEW D, 2011, 83 (10)