Whitehead products in function spaces: Quillen model formulae

被引:9
作者
Lupton, Gregory [1 ]
Smith, Samuel Bruce [2 ]
机构
[1] Cleveland State Univ, Dept Math, Cleveland, OH 44115 USA
[2] St Josephs Univ, Dept Math, Philadelphia, PA 19131 USA
关键词
Whitehead product; function space; Quillen minimal model; derivation; coformal space; Whitehead length; RATIONAL HOMOTOPY; COMPONENTS; MAPS;
D O I
10.2969/jmsj/06210049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Whitehead products in the rational homotopy groups of a general component of a function space. For the component of any based map f : X -> Y, in either the based or free function space, our main results express the Whitehead product directly in terms of the Quillen minimal model of f. These results follow from a purely algebraic development in the setting of chain complexes of derivations of differential graded Lie algebras, which is of interest in its own right. We apply the results to study the Whitehead length of function space components.
引用
收藏
页码:49 / 81
页数:33
相关论文
共 17 条
[1]  
Berstein I., 1961, Il. J. Math, V5, P99
[2]   Some algebraic constructions in rational homotopy theory [J].
Brown, EH ;
Szczarba, RH .
TOPOLOGY AND ITS APPLICATIONS, 1997, 80 (03) :251-258
[3]  
Buijs U, 2008, COMMENT MATH HELV, V83, P723
[4]   LIE MODELS FOR THE COMPONENTS OF SECTIONS OF A NILPOTENT FIBRATION [J].
Buijs, Urtzi ;
Felix, Yves ;
Murillo, Aniceto .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (10) :5601-5614
[5]  
Ganea Tudor., 1960, Proceedings of the London Mathematical Society, Vs3-10, P623
[6]  
Griffiths P. A., 1981, PROGR MATH, V16
[7]  
Halperin S., 2001, GRAD TEXT M, V205, DOI 10.1007/978-1-4613-0105-9
[8]   Cyclic maps in rational homotopy theory [J].
Lupton, G ;
Smith, SB .
MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (01) :113-124
[9]  
Lupton G, 2009, T AM MATH SOC, V361, P267
[10]   Criteria for components of a function space to be homotopy equivalent [J].
Lupton, Gregory ;
Smith, Samuel Bruce .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 :95-106