Suppressing the Voltage Decay Based on a Distinct Stacking Sequence of Oxygen Atoms for Li-Rich Cathode Materials

被引:37
作者
Cao, Shuang [1 ]
Wu, Chao [1 ]
Xie, Xin [1 ]
Li, Heng [1 ]
Zang, Zihao [1 ]
Li, Zhi [1 ]
Chen, Gairong [2 ]
Guo, Xiaowei [2 ]
Wang, Xianyou [1 ]
机构
[1] Xiangtan Univ, Hunan Prov Key Lab Electrochem Energy Storage & C, Natl Local Joint Engn Lab Key Mat New Energy Stor, Sch Chem,Natl Base Int Sci & Technol Cooperat, Xiangtan 411105, Peoples R China
[2] Xinxiang Univ, Sch Chem & Mat Engn, Xinxiang 453003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-rich cathode materials; F-doped O2-type material; voltage decay; rate capability; high-energy density Li-ion batteries; ELECTROCHEMICAL PERFORMANCE; ION BATTERIES; LAYERED OXIDE; NI-RICH; MICROSPHERES; TRANSITION; STABILITY;
D O I
10.1021/acsami.1c02424
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Li-rich cathode materials possess a much higher theoretical energy density than all intercalated cathode materials currently reported and thus are considered as the most promising candidate for next-generation high-energy density Li-ion batteries. However, the rapid voltage decay and the irreversible phase transition of O3-type Li-rich cathode materials often lessen their actual energy density and limit their practical applications, and thus, effectively suppressing the voltage decay of Li-rich cathodes becomes the hotspot of the current research. Herein, the F-doped O2-type Li-rich cathode materials Li1.2Mn0.54Ni0.13Co0.13O2+delta-xFx (F-O2-LRO) are designed and prepared based on the P2-type sodium-ion cathode materials Na5/6Li1/4(Mn0.54Ni0.13Co0.13)(3/4)-O2+delta (Na-LRO) by ion exchange. It has been found that the as-prepared F-O2-LRO exhibits excellent electrochemical performance, for example, a high discharge specific capacity of 280 mA h g(-1) at 0.1 C with an initial Coulombic efficiency of 94.4%, which is obviously higher than the original LRO (77.2%). After 100 cycles, the F-O2-LRO cathode can still maintain a high capacity retention of 95% at a rate of 1 C, while the capacity retention of the original LRO is only 69.1% at the same current rate. Furthermore, the voltage difference (Delta V) of F-O2-LRO before and after cycling is only 0.268 V after 100 cycles at 1 C, which is less than that of the LRO cathode (0.681 V), indicating much lower polarization. Besides, even at a high current rate of 5 C, F-O2-LRO still displays a satisfactory discharge capacity of 210 mA h g(-1) with a capacity retention of 90.1% after 100 cycles. Therefore, this work put forward a new strategy for the development and industrial application of Li-rich cathode materials in high-energy Li-ion batteries.
引用
收藏
页码:17639 / 17648
页数:10
相关论文
共 37 条
  • [1] Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries
    An, Juan
    Shi, Liyi
    Chen, Guorong
    Li, Musen
    Liu, Hongjiang
    Yuan, Shuai
    Chen, Shimou
    Zhang, Dengsong
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) : 19738 - 19744
  • [2] Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
    Assat, Gaurav
    Tarascon, Jean-Marie
    [J]. NATURE ENERGY, 2018, 3 (05): : 373 - 386
  • [3] Promise and reality of post-lithium-ion batteries with high energy densities
    Choi, Jang Wook
    Aurbach, Doron
    [J]. NATURE REVIEWS MATERIALS, 2016, 1 (04):
  • [4] Structure and Interface Design Enable Stable Li-Rich Cathode
    Cui, Chunyu
    Fan, Xiulin
    Zhou, Xiuquan
    Chen, Ji
    Wang, Qinchao
    Ma, Lu
    Yang, Chongyin
    Hu, Enyuan
    Yang, Xiao-Qing
    Wang, Chunsheng
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (19) : 8918 - 8927
  • [5] A Novel Ni-rich O3-Na[Ni0.60Fe0.25M 0.15]O2 Cathode for Na-ion Batteries
    Ding, Feixiang
    Zhao, Chenglong
    Zhou, Dong
    Meng, Qingshi
    Xiao, Dongdong
    Zhang, Qiangqiang
    Niu, Yaoshen
    Li, Yuqi
    Rong, Xiaohui
    Lu, Yaxiang
    Chen, Liquan
    Hu, Yong-Sheng
    [J]. ENERGY STORAGE MATERIALS, 2020, 30 (30) : 420 - 430
  • [6] Electrical Energy Storage for the Grid: A Battery of Choices
    Dunn, Bruce
    Kamath, Haresh
    Tarascon, Jean-Marie
    [J]. SCIENCE, 2011, 334 (6058) : 928 - 935
  • [7] Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes
    Eum, Donggun
    Kim, Byunghoon
    Kim, Sung Joo
    Park, Hyeokjun
    Wu, Jinpeng
    Cho, Sung-Pyo
    Yoon, Gabin
    Lee, Myeong Hwan
    Jung, Sung-Kyun
    Yang, Wanli
    Seong, Won Mo
    Ku, Kyojin
    Tamwattana, Orapa
    Park, Sung Kwan
    Hwang, Insang
    Kang, Kisuk
    [J]. NATURE MATERIALS, 2020, 19 (04) : 419 - +
  • [8] Electrochemical performance and thermal stability of Li1.18Co0.15Ni0.15Mn0.52O2 surface coated with the ionic conductor Li3VO4
    Fu, Qiang
    Du, Fei
    Bian, Xiaofei
    Wang, Yuhui
    Yan, Xiao
    Zhang, Yongquan
    Zhu, Kai
    Chen, Gang
    Wang, Chunzhong
    Wei, Yingjin
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (20) : 7555 - 7562
  • [9] Tailoring atomic distribution in micron-sized and spherical Li-rich layered oxides as cathode materials for advanced lithium-ion batteries
    Hou, Peiyu
    Li, Guoran
    Gao, Xueping
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (20) : 7689 - 7699
  • [10] Kinetic Rejuvenation of Li-Rich Li-Ion Battery Cathodes upon Oxygen Redox
    Lee, Jinhyuk
    Yu, Daiwei
    Zhu, Zhi
    Yao, Xiahui
    Wang, Chao
    Dong, Yanhao
    Malik, Rahul
    Li, Ju
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (08) : 7931 - 7943