Existence results for a model of nonlinear beam on elastic bearings

被引:54
作者
Ma, TF [1 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
关键词
Kirchhoff equation; elastic beam; fourth-order ODE;
D O I
10.1016/S0893-9659(00)00026-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of solutions of the nonlinear fourth-order equation of Kirchhoff type u((iv)) - m (integral(0)(1)\ u' (x)\(2) dx) u'' + f (x,u) = 0 under nonlinear boundary conditions which models the deformations of beams on elastic bearings. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:11 / 15
页数:5
相关论文
共 11 条
[1]   EXISTENCE AND UNIQUENESS THEOREMS FOR 4TH-ORDER BOUNDARY-VALUE-PROBLEMS [J].
AFTABIZADEH, AR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 116 (02) :415-426
[2]  
Agarwal R.P., 1986, BOUND VALUE PROBL
[3]  
Doppel K., 1997, Z ANAL ANWEND, V16, P945, DOI [10.4171/ZAA/798, DOI 10.4171/ZAA/798]
[4]  
FEIREISL E, 1993, ANN SCUOLA NORMALE S, V20, P133
[5]  
Grossinho M., 1994, PORT MATH, V51, P375
[6]  
GROSSINHO MR, 1997, P 7 INT C DIFF EQ, P123
[7]  
Gupta C. P., 1991, DIFFERENTIAL INTEGRA, V4, P397
[8]  
Kirchhoff GR., 1876, VORLESUNGEN MATH PHY
[9]  
MAWHIN J, 1986, LECT NOTES MATH, V1192
[10]   NEW CLASS OF NON-LINEAR WAVE-EQUATIONS [J].
MEDEIROS, LA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 69 (01) :252-262