The potential of nanomaterials associated with plant growth-promoting bacteria in agriculture

被引:28
|
作者
de Moraes, Amanda Carolina Prado [1 ,2 ]
Ribeiro, Lucas da Silva [3 ]
de Camargo, Emerson Rodrigues [3 ]
Lacava, Paulo Teixeira [1 ,2 ]
机构
[1] Fed Univ Sao Carlos UFSCar, Lab Microbiol & Biomol, Dept Morphol & Pathol, Rod Washington Luiz S-N, BR-13565905 Sao Carlos, Brazil
[2] Fed Univ Sao Carlos UFSCar, Biotechnol Graduat Program PPG Biotec, Rod Washington Luiz S-N, BR-13565905 Sao Carlos, Brazil
[3] Fed Univ Sao Carlos UFSCar, Interdisciplinary Lab Electrochem & Ceram, Dept Chem, Rod Washington Luiz S-N, BR-13565905 Sao Carlos, Brazil
基金
巴西圣保罗研究基金会;
关键词
Endophytes; Nanobiofertilizer; Nanoparticles; Plant growth; Rhizobacteria; ZINC-OXIDE NANOPARTICLES; TITANIUM-DIOXIDE NANOPARTICLES; SILICA NANOPARTICLES; SILVER NANOPARTICLES; SIGNAL-TRANSDUCTION; HYDROTHERMAL METHOD; TIO2; NANOPARTICLES; ZNO NANOPARTICLES; STRESS TOLERANCE; BIOTIC STRESS;
D O I
10.1007/s13205-021-02870-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The impacts of chemical fertilizers and pesticides have raised public concerns regarding the sustainability and security of food supplies, prompting the investigation of alternative methods that have combinations of both agricultural and environmental benefits, such as the use of biofertilizers involving microbes. These types of microbial inoculants are living microorganisms that colonize the soil or plant tissues when applied to the soil, seeds, or plant surfaces, facilitating plant nutrient acquisition. They can enhance plant growth by transforming nutrients into a form assimilable by plants and by acting as biological control agents, known as plant growth-promoting bacteria. The potential use of bacteria as biofertilizers in agriculture constitutes an economical and eco-friendly way to reduce the use of chemical fertilizers and pesticides. In this context, nanotechnology has emerged as a new source of quality enrichment for the agricultural sector. The use of nanoparticles can be an effective method to meet the challenges regarding the effectiveness of biofertilizers in natural environments. Given the novel sustainable strategies applied in agricultural systems, this review addresses the effects of nanoparticles on beneficial plant bacteria for promoting plant growth.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus)
    H. Bertrand
    R. Nalin
    R. Bally
    J.-C. Cleyet-Marel
    Biology and Fertility of Soils, 2001, 33 : 152 - 156
  • [32] Comprehensive characterization of stress tolerant bacteria with plant growth-promoting potential isolated from glyphosate-treated environment
    Zhumakayev, Anuar R.
    Voeroes, Monika
    Szekeres, Andras
    Rakk, David
    Vagvoelgyi, Csaba
    Szucs, Attila
    Kredics, Laszlo
    Skrbic, Biljana D.
    Hatvani, Lorant
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2021, 37 (06)
  • [33] Genomic mechanisms of plant growth-promoting bacteria in the production of leguminous crops
    Adedayo, Afeez Adesina
    Babalola, Olubukola Oluranti
    FRONTIERS IN GENETICS, 2023, 14
  • [34] Isolation of halo-tolerant bacteria with plant growth-promoting traits
    Sipayung, Jaliaman
    Tarno, Hagus
    Chang, Pearl
    7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE AGRICULTURE, FOOD AND ENERGY, 2021, 709
  • [35] Screening of Azotobacter, Bacillus and Pseudomonas Species as Plant Growth-Promoting Bacteria
    Minut, Mariana
    Diaconu, Mariana
    Rosca, Mihaela
    Cozma, Petronela
    Bulgariu, Laura
    Gavrilescu, Maria
    PROCESSES, 2023, 11 (01)
  • [36] Editorial: Plant Growth-Promoting Microorganisms for Sustainable Agricultural Production
    Rigobelo, Everlon Cid
    Kandasamy, Saveetha
    Saravanakumar, Duraisamy
    FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2022, 6
  • [37] The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential
    Jha, Bhavanath
    Gontia, Iti
    Hartmann, Anton
    PLANT AND SOIL, 2012, 356 (1-2) : 265 - 277
  • [38] Evaluation of Plant Growth-Promoting and Salinity Ameliorating Potential of Halophilic Bacteria Isolated From Saline Soil
    Kapadia, Chintan
    Patel, Nafisa
    Rana, Ankita
    Vaidya, Harihar
    Alfarraj, Saleh
    Ansari, Mohammad Javed
    Gafur, Abdul
    Poczai, Peter
    Sayyed, R. Z.
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [39] Isolation of bacteria with plant growth-promoting activities from a foliar biofertilizer
    Tor, Xin Yen
    Toh, Wai Keat
    Loh, Pek Chin
    Wong, Hann Ling
    MALAYSIAN JOURNAL OF MICROBIOLOGY, 2022, 18 (03) : 315 - 321
  • [40] Nanomaterials as Potential Plant Growth Modulators: Applications, Mechanism of Uptake, and Toxicity: A Comprehensive Review
    Sakthivel, Anitha
    Chandrasekaran, Rajkuberan
    Balasubramaniam, Santhanalakshmi
    Sathyanarayanan, Harithaa
    Gnanajothi, Kapildev
    Selvakumar, T.
    BIONANOSCIENCE, 2025, 15 (01)