A Generative Adversarial Networks for Log Anomaly Detection

被引:14
|
作者
Duan, Xiaoyu [1 ]
Ying, Shi [1 ]
Yuan, Wanli [1 ]
Cheng, Hailong [1 ]
Yin, Xiang [2 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China
来源
COMPUTER SYSTEMS SCIENCE AND ENGINEERING | 2021年 / 37卷 / 01期
基金
中国国家自然科学基金;
关键词
Generative adversarial networks; anomaly detection; data mining; deep learning; IMAGE; PREDICTION;
D O I
10.32604/csse.2021.014030
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Detecting anomaly logs is a great significance step for guarding system faults. Due to the uncertainty of abnormal log types, lack of real anomaly logs and accurately labeled log datasets. Existing technologies cannot be enough for detecting complex and various log point anomalies by using human-defined rules. We propose a log anomaly detection method based on Generative Adversarial Networks (GAN). This method uses the Encoder-Decoder framework based on Long Short-Term Memory (LSTM) network as the generator, takes the log keywords as the input of the encoder, and the decoder outputs the generated log template. The discriminator uses the Convolutional Neural Networks (CNN) to identify the difference between the generated log template and the real log template. The model parameters are optimized automatically by iteration. In the stage of anomaly detection, the probability of anomaly is calculated by the Euclidean distance. Experiments on real data show that this method can detect log point anomalies with an average precision of 95%. Besides, it outperforms other existing log-based anomaly detection methods.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 50 条
  • [21] Future of generative adversarial networks (GAN) for anomaly detection in network security: A review
    Lim, Willone
    Yong, Kelvin Sheng Chek
    Lau, Bee Theng
    Tan, Colin Choon Lin
    COMPUTERS & SECURITY, 2024, 139
  • [22] Anomaly detection by using a combination of generative adversarial networks and convolutional autoencoders
    Xukang Luo
    Ying Jiang
    Enqiang Wang
    Xinlei Men
    EURASIP Journal on Advances in Signal Processing, 2022
  • [23] Generative Adversarial Network and Auto Encoder based Anomaly Detection in Distributed IoT Networks
    Tian Zixu
    Liyanage, Kushan Sudheera Kalupahana
    Gurusamy, Mohan
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [24] Anomaly detection by using a combination of generative adversarial networks and convolutional autoencoders
    Luo, Xukang
    Jiang, Ying
    Wang, Enqiang
    Men, Xinlei
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [25] Generative Adversarial Networks for Robust Anomaly Detection in Noisy IoT Environments
    Abusitta, Adel
    Halabi, Talal
    Bataineh, Ahmed Saleh
    Zulkernine, Mohammad
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 4644 - 4649
  • [26] TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks
    Geiger, Alexander
    Liu, Dongyu
    Alnegheimish, Sarah
    Cuesta-Infante, Alfredo
    Veeramachaneni, Kalyan
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 33 - 43
  • [27] Applying of Generative Adversarial Networks for Anomaly Detection in Industrial Control Systems
    Alabugin, Sergei K.
    Sokolov, Alexander N.
    2020 GLOBAL SMART INDUSTRY CONFERENCE (GLOSIC), 2020, : 199 - 203
  • [28] Least Squares Generative Adversarial Networks-Based Anomaly Detection
    Lee, Chang-Ki
    Cheon, Yu-Jeong
    Hwang, Wook-Yeon
    IEEE ACCESS, 2022, 10 : 26920 - 26930
  • [29] Double-Adversarial Activation Anomaly Detection: Adversarial Autoencoders are Anomaly Generators
    Schulze, Jan-Philipp
    Sperl, Philip
    Boettinger, Konstantin
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [30] Anomaly prediction of Internet behavior based on generative adversarial networks
    Wang, Xiuqing
    An, Yang
    Hu, Qianwei
    PEERJ COMPUTER SCIENCE, 2024, 10