Multicomponent integrable wave equations: I. Darboux-dressing transformation

被引:85
作者
Degasperis, A.
Lombardo, S.
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy
[2] Ist Nazl Fis Nucl, Sez Rome, Rome, Italy
[3] Vrije Univ Amsterdam, Dept Math, Amsterdam, Netherlands
关键词
D O I
10.1088/1751-8113/40/5/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Darboux-dressing transformations are applied to the Lax pair associated with systems of coupled nonlinear wave equations in the case of boundary values which are appropriate to both 'bright' and 'dark' soliton solutions. The general formalism is set up and the relevant equations are explicitly solved. Several instances of multicomponent wave equations of applicative interest, such as vector nonlinear Schrodinger-type equations and three resonant wave equations, are considered.
引用
收藏
页码:961 / 977
页数:17
相关论文
共 38 条
[1]  
Ablowitz M. J., 1991, LONDON MATH SOC LECT, V149
[2]  
[Anonymous], 1974, Sov. Phys. JETP
[3]  
[Anonymous], 1986, HAMILTONIAN METHODS
[4]   New integrable PDEs of boomeronic type [J].
Calogero, F ;
Degasperis, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (26) :8349-8376
[5]   Novel solution of the system describing the resonant interaction of three waves [J].
Calogero, F ;
Degasperis, A .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 200 (3-4) :242-256
[6]   New integrable equations of nonlinear Schrodinger type [J].
Calogero, F ;
Degasperis, A .
STUDIES IN APPLIED MATHEMATICS, 2004, 113 (01) :91-137
[7]   COUPLED NONLINEAR EVOLUTION EQUATIONS SOLVABLE VIA INVERSE SPECTRAL TRANSFORM, AND SOLITONS THAT COME BACK - BOOMERON [J].
CALOGERO, F ;
DEGASPERIS, A .
LETTERE AL NUOVO CIMENTO, 1976, 16 (14) :425-433
[8]  
CALOGERO F, 1982, SPECTRAL TRANSFORM S, V1
[9]  
CALOGERO F, 1991, INTEGRABILITY, P1
[10]   Multiple-scale perturbation beyond the nonlinear Schroedinger equation .1. [J].
Degasperis, A ;
Manakov, SV ;
Santini, PM .
PHYSICA D, 1997, 100 (1-2) :187-211