Stochastic modelling of intermittency

被引:6
作者
Stemler, Thomas [1 ]
Werner, Johannes P. [2 ]
Benner, Hartmut [2 ]
Just, Wolfram [3 ]
机构
[1] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
[2] Tech Univ Darmstadt, Inst Condensed Matter Phys, D-64289 Darmstadt, Germany
[3] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2010年 / 368卷 / 1910期
关键词
intermittency; stochastic modelling; Fokker-Planck equation; time-series analysis;
D O I
10.1098/rsta.2009.0196
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, methods have been developed to model low-dimensional chaotic systems in terms of stochastic differential equations. We tested such methods in an electronic circuit experiment. We aimed to obtain reliable drift and diffusion coefficients even without a pronounced time-scale separation of the chaotic dynamics. By comparing the analytical solutions of the corresponding Fokker-Planck equation with experimental data, we show here that crisis-induced intermittency can be described in terms of a stochastic model which is dominated by state-space-dependent diffusion. Further on, we demonstrate and discuss some limits of these modelling approaches using numerical simulations. This enables us to state a criterion that can be used to decide whether a stochastic model will capture the essential features of a given time series.
引用
收藏
页码:273 / 284
页数:12
相关论文
共 23 条
[1]  
[Anonymous], 1998, MULTIPLICATIVE ERGOD, DOI DOI 10.1007/978-3-662-12878-7_4
[2]  
[Anonymous], 1989, FOKKERPLANCK EQUATIO
[3]   Advances in simulating atmospheric variability with the ECMWF model:: From synoptic to decadal time-scales [J].
Bechtold, Peter ;
Koehler, Martin ;
Jung, Thomas ;
Doblas-Reyes, Francisco ;
Leutbecher, Martin ;
Rodwell, Mark J. ;
Vitart, Frederic ;
Balsamo, Gianpaolo .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (634) :1337-1351
[4]   FROM THE PERRON-FROBENIUS EQUATION TO THE FOKKER-PLANCK EQUATION [J].
BECK, C .
JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (5-6) :875-894
[5]   GENERALIZED LORENTZ SYSTEM [J].
CURRY, JH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 60 (03) :193-204
[7]   How to quantify deterministic and random influences on the statistics of the foreign exchange market [J].
Friedrich, R ;
Peinke, J ;
Renner, C .
PHYSICAL REVIEW LETTERS, 2000, 84 (22) :5224-5227
[8]   Description of a turbulent cascade by a Fokker-Planck equation [J].
Friedrich, R ;
Peinke, J .
PHYSICAL REVIEW LETTERS, 1997, 78 (05) :863-866
[9]  
Gardiner C.W., 2004, Springer Series in Synergetics, VVolume 13
[10]  
GIVON D, 2004, NONLINEARITY, V55, pR127, DOI DOI 10.1088/0951-7715/17/6/R01