The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates

被引:25
作者
Poole, Jose Ricardo Morales [1 ]
Huang, Sheng Feng [2 ]
Xu, Anlong [2 ,3 ]
Bayet, Justine [1 ]
Pontarotti, Pierre [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, UMR 7373 I2M,Equipe Evolut Biol Modelisat, F-13453 Marseille, France
[2] Sun Yat Sen Univ, Sch Life Sci, State Key Lab Biocontrol, Guangdong Key Lab Pharmaceut Funct Genes, Guangzhou 510275, Guangdong, Peoples R China
[3] Beijing Univ Chinese Med, Dong San Huan Rd, Beijing 100029, Peoples R China
关键词
Immune system; Recombination; Transposon; Cooption; Ancestral state; V(D)J RECOMBINATION; PROTEINS; ENDS;
D O I
10.1007/s00251-017-0979-5
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
RAG1 and RAG2 are essential subunits of the V(D)J recombinase required for the generation of the variability of antibodies and T cell receptors in jawed vertebrates. It was demonstrated that the amphioxus homologue of RAG1-RAG2 is encoded in an active transposon, belonging to the transposase DDE superfamily. The data provided support the possibility that the RAG transposon has been active through the deuterostome evolution and is still active in several lineages. The RAG transposon corresponds to several families present in deuterostomes. RAG1-RAG2 V(D)J recombinase evolved from one of them, partially due to the new ability of the transposon to interact with the cellular reparation machinery. Considering the fact that the RAG transposon survived millions of years in many different lineages, in multiple copies, and that DDE transposases evolved their association with proteins involved in repair mechanisms, we propose that the apparition of V(D)J recombination machinery could be a predictable genetic event.
引用
收藏
页码:391 / 400
页数:10
相关论文
共 26 条
[1]   Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system [J].
Agrawal, A ;
Eastman, QM ;
Schatz, DG .
NATURE, 1998, 394 (6695) :744-751
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   Mobilization of RAG-generated signal ends by transposition and insertion in vivo [J].
Chatterji, M ;
Tsai, CL ;
Schatz, DG .
MOLECULAR AND CELLULAR BIOLOGY, 2006, 26 (04) :1558-1568
[4]   Chromosomal reinsertion of broken RSS ends during T cell development [J].
Curry, John D. ;
Schulz, Danae ;
Guidos, Cynthia J. ;
Danska, Jayne S. ;
Nutter, Lauryl ;
Nussenzweig, Andre ;
Schlissel, Mark S. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2007, 204 (10) :2293-2303
[5]   The major histocompatibility complex origin [J].
Danchin, E ;
Vitiello, V ;
Vienne, A ;
Richard, O ;
Gouret, P ;
McDermott, MF ;
Pontarotti, P .
IMMUNOLOGICAL REVIEWS, 2004, 198 :216-232
[6]   DNA transposons and the evolution of eukaryotic genomes [J].
Feschotte, Cedric ;
Pritham, Ellen J. .
ANNUAL REVIEW OF GENETICS, 2007, 41 :331-368
[7]   An ancient evolutionary origin of the Rag1/2 gene locus [J].
Fugmann, SD ;
Messier, C ;
Novack, LA ;
Cameron, RA ;
Rast, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (10) :3728-3733
[8]   The origins of the Rag genes-From transposition to V(D)J recombination [J].
Fugmann, Sebastian D. .
SEMINARS IN IMMUNOLOGY, 2010, 22 (01) :10-16
[9]   DNA transposition by the RAG1 and RAG2 proteins: A possible source of oncogenic translocations [J].
Hiom, K ;
Melek, M ;
Gellert, M .
CELL, 1998, 94 (04) :463-470
[10]  
Hsu E., 2015, MOL BIOL B CELLS, P133