On Bayesian mixture credibility

被引:5
|
作者
Lau, John W. [1 ]
Siu, Tak Kuen
Yang, Hailiang
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TH, Avon, England
[2] Heriot Watt Univ, Sch Math & Comp Sci, Dept Actuarial Math & Stat, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[4] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
来源
ASTIN BULLETIN | 2006年 / 36卷 / 02期
关键词
credibility theory; Bayesian mixture models; infinite mixture; risk characteristics; clustering; weighted Chinese restaurant process; credibility premium principle; Dirichlet process;
D O I
10.2143/AST.36.2.2017934
中图分类号
F [经济];
学科分类号
02 ;
摘要
We introduce a class of Bayesian infinite mixture models first introduced by Lo (1984) to determine the credibility premium for a non-homogeneous insurance portfolio. The Bayesian infinite mixture models provide us with much flexibility in the specification of the claim distribution. We employ the sampling scheme based on a weighted Chinese restaurant process introduced in Lo et al. (1996) to estimate a Bayesian infinite mixture model from the claim data. The Bayesian sampling scheme also provides a systematic way to cluster the claim data. This can provide some insights into the risk characteristics of the policyholders. The estimated credibility premium from the Bayesian infinite mixture model can be written as a linear combination of the prior estimate and the sample mean of the claim data. Estimation results for the Bayesian mixture credibility premiums will be presented.
引用
收藏
页码:573 / 588
页数:16
相关论文
共 50 条
  • [41] Hierarchical Bayesian nonparametric mixture models for clustering with variable relevance determination
    Yau, Christopher
    Holmes, Chris
    BAYESIAN ANALYSIS, 2011, 6 (02): : 329 - 351
  • [42] Bayesian Spike Sorting: Parametric and Nonparametric Multivariate Gaussian Mixture Models
    White, Nicole
    van Havre, Zoe
    Rousseau, Judith
    Mengersen, Kerrie L.
    CASE STUDIES IN APPLIED BAYESIAN DATA SCIENCE: CIRM JEAN-MORLET CHAIR, FALL 2018, 2020, 2259 : 215 - 227
  • [43] Bayesian nonparametric survival analysis using mixture of Burr XII distributions
    Hajjar, S. Bohlouri
    Khazaei, S.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (09) : 2724 - 2738
  • [44] Bayesian Inference in Infinite Multivariate McDonald's Beta Mixture Model
    Forouzanfar, Darya
    Manouchehri, Narges
    Bouguila, Nizar
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2023, PT II, 2023, 14126 : 320 - 330
  • [45] Bayesian approaches to variable selection in mixture models with application to disease clustering
    Lu, Zihang
    Lou, Wendy
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (02) : 387 - 407
  • [46] Variational Bayesian Learning for Mixture Autoregressive Models With Uncertain-Order
    Morton, Kenneth D., Jr.
    Torrione, Peter A.
    Collins, Leslie M.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (06) : 2614 - 2627
  • [47] Enhanced Bayesian Gaussian hidden Markov mixture clustering for improved knowledge discovery
    Ganesan, Anusha
    Paul, Anand
    Kim, Sungho
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (04)
  • [48] Nonparametric Bayesian inferences on the skewed data using a Dirichlet process mixture model
    Mostofi, Amin Ghalamfarsa
    Kharrati-Kopaei, Mahmood
    STATISTICAL PAPERS, 2025, 66 (01)
  • [49] Capturing consumer heterogeneity in metric conjoint analysis using Bayesian mixture models
    Otter, T
    Tüchler, R
    Frühwirth-Schnatter, S
    INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING, 2004, 21 (03) : 285 - 297
  • [50] PREDICTING COVID-19 HOSPITALISATION USING A MIXTURE OF BAYESIAN PREDICTIVE SYNTHESES
    Kobayashi, Genya
    Sugasawa, Shonosuke
    Kawakubo, Yuki
    Han, Dongu
    Choi, Taeryon
    ANNALS OF APPLIED STATISTICS, 2024, 18 (04) : 3383 - 3404