On Bayesian mixture credibility

被引:5
|
作者
Lau, John W. [1 ]
Siu, Tak Kuen
Yang, Hailiang
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TH, Avon, England
[2] Heriot Watt Univ, Sch Math & Comp Sci, Dept Actuarial Math & Stat, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[4] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
来源
ASTIN BULLETIN | 2006年 / 36卷 / 02期
关键词
credibility theory; Bayesian mixture models; infinite mixture; risk characteristics; clustering; weighted Chinese restaurant process; credibility premium principle; Dirichlet process;
D O I
10.2143/AST.36.2.2017934
中图分类号
F [经济];
学科分类号
02 ;
摘要
We introduce a class of Bayesian infinite mixture models first introduced by Lo (1984) to determine the credibility premium for a non-homogeneous insurance portfolio. The Bayesian infinite mixture models provide us with much flexibility in the specification of the claim distribution. We employ the sampling scheme based on a weighted Chinese restaurant process introduced in Lo et al. (1996) to estimate a Bayesian infinite mixture model from the claim data. The Bayesian sampling scheme also provides a systematic way to cluster the claim data. This can provide some insights into the risk characteristics of the policyholders. The estimated credibility premium from the Bayesian infinite mixture model can be written as a linear combination of the prior estimate and the sample mean of the claim data. Estimation results for the Bayesian mixture credibility premiums will be presented.
引用
收藏
页码:573 / 588
页数:16
相关论文
共 50 条
  • [31] Bayesian Population Pharmacokinetic and Pharmacodynamic Analyses Using Mixture Models
    Gary L. Rosner
    Peter Müller
    Journal of Pharmacokinetics and Biopharmaceutics, 1997, 25 : 209 - 233
  • [32] Controlling the reinforcement in Bayesian non-parametric mixture models
    Lijoi, Antonio
    Mena, Ramses H.
    Prunster, Igor
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 715 - 740
  • [33] A Two-Way Bayesian Mixture Model for Clustering in Metagenomics
    Prabhakara, Shruthi
    Acharya, Raj
    PATTERN RECOGNITION IN BIOINFORMATICS, 2011, 7036 : 25 - 36
  • [34] Bayesian Sparse Gaussian Mixture Model for Clustering in High Dimensions
    Yao, Dapeng
    Xie, Fangzheng
    Xu, Yanxun
    JOURNAL OF MACHINE LEARNING RESEARCH, 2025, 26 : 1 - 50
  • [35] A Bayesian semiparametric accelerate failure time mixture cure model
    Wang, Yijun
    Wang, Weiwei
    Tang, Yincai
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2022, 18 (02) : 473 - 485
  • [36] Bayesian population pharmacokinetic and pharmacodynamic analyses using mixture models
    Rosner, GL
    Muller, P
    JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1997, 25 (02): : 209 - 233
  • [37] MCMC for Bayesian Nonparametric Mixture Modeling Under Differential Privacy
    Beraha, Mario
    Favaro, Stefano
    Rao, Vinayak
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,
  • [38] Kullback Leibler property of kernel mixture priors in Bayesian density estimation
    Wu, Yuefeng
    Ghosal, Subhashis
    ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 298 - 331
  • [39] Variational Bayesian inference for a Dirichlet process mixture of beta distributions and application
    Lai, Yuping
    Ping, Yuan
    Xiao, Ke
    Hao, Bin
    Zhang, Xiufeng
    NEUROCOMPUTING, 2018, 278 : 23 - 33
  • [40] A hierarchical Bayesian mixture model for inferring the expression state of genes in transcriptomes
    Thompsona, Ammon
    May, Michael R.
    Moore, Brian R.
    Koppa, Artyom
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (32) : 19339 - 19346