An Improved Robust Predictive Control Approach Based on Generalized 3rd Order S-PARAFAC Volterra Model Applied to a 2-DoF Helicopter System

被引:7
作者
Anis, Khouaja [1 ]
Tarek, Garna [1 ]
机构
[1] Univ Sousse, Higher Inst Appl Sci & Technol Sousse, Cite Ibn Khaldoun 4003, Sousse, Tunisia
关键词
Min-max optimization; PARAFAC decomposition; parameter uncertainty set; robust predictive control; uncertain dynamic systems; Volterra model;
D O I
10.1007/s12555-019-0936-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a generalized robust predictive control approach based on 3(rd) order S-PARAFAC Volterra Model. The main idea is to use the predictive control law based on the latter model with taking into account the parameter and operation uncertainties resulting from the measurement noise and the robust identification technique named Unknown But Bounded Error (UBBE). One of the advantages is the convexity of the objective function with respect to the parameter uncertainty set. The min-max optimization problem becomes thus simpler, by minimizing the objective function in the worst-case only over the set of uncertain models. This work proposes a new generalized nonlinear robust control algorithm dedicated for uncertain processes. In this algorithm we optimize a quadratic criterion and take into account the physical and geometrical constraints due to parameter uncertainties. The performances of this work are illustrated and validated on a benchmark as a continuous stirred-tank reactor system (CSTR) and on an experimental 2-DoF helicopter system.
引用
收藏
页码:1618 / 1632
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 2005, P IFAC WORLD C PRAG
[2]  
[Anonymous], 2005, P IFAC WORLD C PRAG
[3]   A RECURSIVE QUADRATIC-PROGRAMMING METHOD WITH ACTIVE SET STRATEGY FOR OPTIMAL-DESIGN [J].
BELEGUNDU, AD ;
ARORA, JS .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1984, 20 (05) :803-816
[4]   Non-linear predictive controller for uncertain process modelled by GOBF-Volterra models [J].
Bouzrara, Kais ;
Mbarek, Abdelkader ;
Garna, Tarek .
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2013, 19 (04) :307-322
[5]  
Demuth H., 2007, NEURAL NETWORK TOOLB
[6]  
Doyle F. J., 1991, THESIS CALTECH CA
[7]   Nonlinear system modeling and identification using Volterra-PARAFAC models [J].
Favier, Gerard ;
Kibangou, Alain Y. ;
Bouilloc, Thomas .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2012, 26 (01) :30-53
[8]   Robust nonlinear control associating robust feedback linearization and H∞ control [J].
Franco, Ana Lucia D. ;
Bourles, Henri ;
De Pieri, Edson R. ;
Guillard, Herve .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (07) :1200-1207
[9]  
Guillard H., 2000, P 14 INT S MATH THEO
[10]   Robust Model Predictive Control of Biped Robots with Adaptive On-line Gait Generation [J].
Heydari, Reza ;
Farrokhi, Mohammad .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (01) :329-344