Quantitative performance metrics for robustness in circadian rhythms

被引:30
作者
Bagheri, Neda
Stelling, Joerg
Doyle, Francis J., III [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] ETH, Inst Computat Sci, CH-8092 Zurich, Switzerland
[3] ETH, Swiss Inst Bioinformat, CH-8092 Zurich, Switzerland
[4] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/bioinformatics/btl627
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Sensitivity analysis provides key measures that aid in unraveling the design principles responsible for the robust performance of biological networks. Such metrics allow researchers to investigate comprehensively model performance, to develop more realistic models, and to design informative experiments. However, sensitivity analysis of oscillatory systems focuses on period and amplitude characteristics, while biologically relevant effects on phase are neglected. Results: Here, we introduce a novel set of phase-based sensitivity metrics for performance: period, phase, corrected phase and relative phase. Both state- and phase-based tools are applied to free-running Drosophila melanogaster and Mus musculus circadian models. Each metric produces unique sensitivity values used to rank parameters from least to most sensitive. Similarities among the resulting rank distributions strongly suggest a conservation of sensitivity with respect to parameter function and type. A consistent result, for instance, is that model performance of biological oscillators is more sensitive to global parameters than local (i.e. circadian specific) parameters. Discrepancies among these distributions highlight the individual metrics' definition of performance as specific parametric sensitivity values depend on the defined metric, or output.
引用
收藏
页码:358 / 364
页数:7
相关论文
共 29 条
  • [1] A recessive mutant of Drosophila Clock reveals a role in circadian rhythm amplitude
    Allada, R
    Kadener, S
    Nandakumar, N
    Rosbash, M
    [J]. EMBO JOURNAL, 2003, 22 (13) : 3367 - 3375
  • [2] vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock
    Cyran, SA
    Buchsbaum, AM
    Reddy, KL
    Lin, MC
    Glossop, NRJ
    Hardin, PE
    Young, MW
    Storti, RV
    Blau, J
    [J]. CELL, 2003, 112 (03) : 329 - 341
  • [3] FUNCTIONAL-ANALYSIS OF CIRCADIAN PACEMAKERS IN NOCTURNAL RODENTS .2. VARIABILITY OF PHASE RESPONSE CURVES
    DAAN, S
    PITTENDRIGH, CS
    [J]. JOURNAL OF COMPARATIVE PHYSIOLOGY, 1976, 106 (03): : 253 - 266
  • [4] Dunlap J.C., 2003, CHRONOBIOLOGY BIOL T
  • [5] Circadian rhythms in a nutshell
    Edery, I
    [J]. PHYSIOLOGICAL GENOMICS, 2000, 3 (02) : 59 - 74
  • [6] Robustness of circadian rhythms with respect to molecular noise
    Gonze, D
    Halloy, J
    Goldbeter, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) : 673 - 678
  • [7] Dynamical principles of two-component genetic oscillators
    Guantes, Raul
    Poyatos, Juan F.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (03) : 188 - 197
  • [8] Forty years of PRCs - What have we learned?
    Johnson, CH
    [J]. CHRONOBIOLOGY INTERNATIONAL, 1999, 16 (06) : 711 - 743
  • [9] Transcriptional regulation of the Neurospora circadian clock gene wc-1 affects the phase of circadian output
    Káldi, K
    González, BH
    Brunner, M
    [J]. EMBO REPORTS, 2006, 7 (02) : 199 - 204
  • [10] Khalil HK., 2002, NONLINEAR SYSTEMS, V3rd edition