Coulombic Force Gated Molecular Transport in Redox Flow Batteries

被引:11
作者
Gautam, Manu [1 ,2 ]
Bhat, Zahid M. [1 ,2 ]
Raafik, Abdul [1 ,2 ]
Le Vot, Steven [3 ]
Devendrachari, Mruthunjayachari C. [1 ,2 ]
Kottaichamy, Alagar Raja [1 ,2 ]
Dargily, Neethu Christudas [1 ,2 ]
Thimmappa, Ravikumar [1 ,2 ]
Fontaine, Olivier [4 ]
Thotiyl, Musthafa Ottakam [1 ,2 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Chem, Pune 411008, Maharashtra, India
[2] Indian Inst Sci Educ & Res, Ctr Energy Sci, Pune 411008, Maharashtra, India
[3] Inst Charles Gerhardt Montpellier, F-34095 Montpellier, France
[4] Vidyasirimedhi Inst Sci & Technol VISTEC, Sch Energy Sci & Engn, Rayong 21210, Thailand
关键词
POLY(DIALLYL DIMETHYLAMMONIUM) CHLORIDE; ELECTRON-TRANSFER KINETICS; CARBON NANOTUBES; OUTER-SPHERE; MESOPOROUS CARBON; HIGH-PERFORMANCE; CHARGE-TRANSFER; OXIDATION; COMPOSITE; ELECTRODEPOSITION;
D O I
10.1021/acs.jpclett.0c03584
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interfacial electrochemistry of reversible redox molecules is central to state-of-the-art flow batteries, outer-sphere redox species-based fuel cells, and electrochemical biosensors. At electrochemical interfaces, because mass transport and interfacial electron transport are consecutive processes, the reaction velocity in reversible species is predominantly mass-transport-controlled because of their fast electron-transfer events. Spatial structuring of the solution near the electrode surface forces diffusion to dominate the transport phenomena even under convective fluid-flow, which in turn poses unique challenges to utilizing the maximum potential of reversible species by either electrode or fluid characteristics. We show Coulombic force gated molecular flux at the interface to target the transport velocity of reversible species; that in turn triggers a directional electrostatic current over the diffusion current within the reaction zone. In an iron-based redox flow battery, this gated molecular transport almost doubles the volumetric energy density without compromising the power capability.
引用
收藏
页码:1374 / 1383
页数:10
相关论文
共 67 条
[1]  
Aroyo M, 1998, PLAT SURF FINISH, V85, P69
[2]  
Bard A.J., 2000, Fundamentals and Applications
[3]   Efficient Covalent Modification of Multiwalled Carbon Nanotubes with Diazotized Dyes in Water at Room Temperature [J].
Bensghaier, Asma ;
Truong, Stephanie Lau ;
Seydou, Mahamadou ;
Lamouri, Aazdine ;
Leroy, Eric ;
Micusik, Matej ;
Forro, Klaudia ;
Beji, Mohamed ;
Pinson, Jean ;
Omastova, Maria ;
Chehimi, Mohamed M. .
LANGMUIR, 2017, 33 (27) :6677-6690
[4]   A Direct Alcohol Fuel Cell Driven by an Outer Sphere Positive Electrode [J].
Bhat, Zahid Manzoor ;
Thimmappa, Ravikumar ;
Devendrachari, Mruthunjayachari Chattanahalli ;
Shafi, Shahid Pottachola ;
Aralekallu, Shambulinga ;
Kottaichamy, Alagar Raja ;
Gautam, Manu ;
Thotiyl, Musthafa Ottakam .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (15) :3523-3529
[5]  
Chen H.-Y., 2020, ACS APPL MATER INTER, DOI [10.1021/acsa- mi.9b19096, DOI 10.1021/ACSA-MI.9B19096]
[6]   A Stable and High-Capacity Redox Targeting-Based Electrolyte for Aqueous Flow Batteries [J].
Chen, Yan ;
Zhou, Mingyue ;
Xia, Yuanhua ;
Wang, Xun ;
Liu, Yang ;
Yao, Yuan ;
Zhang, Hang ;
Li, Yang ;
Lu, Songtao ;
Qin, Wei ;
Wu, Xiaohong ;
Wang, Qing .
JOULE, 2019, 3 (09) :2255-2267
[7]   Marcus theory of outer-sphere heterogeneous electron transfer reactions: Dependence of the standard electrochemical rate constant on the hydrodynamic radius from high precision measurements of the oxidation of anthracene and its derivatives in nonaqueous solvents using the high-speed channel electrode [J].
Clegg, AD ;
Rees, NV ;
Klymenko, OV ;
Coles, BA ;
Compton, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (19) :6185-6192
[8]   OUTER-SPHERE CHARGE-TRANSFER IN MIXED-METAL ION-PAIRS [J].
CURTIS, JC ;
MEYER, TJ .
INORGANIC CHEMISTRY, 1982, 21 (04) :1562-1571
[9]   Chemical oxidation of multiwalled carbon nanotubes [J].
Datsyuk, V. ;
Kalyva, M. ;
Papagelis, K. ;
Parthenios, J. ;
Tasis, D. ;
Siokou, A. ;
Kallitsis, I. ;
Galiotis, C. .
CARBON, 2008, 46 (06) :833-840
[10]   Electrochemical DNA sensors [J].
Drummond, TG ;
Hill, MG ;
Barton, JK .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1192-1199