Waveguide-Coupled Rydberg Spectrum Analyzer from 0 to 20 GHz

被引:156
作者
Meyer, David H. [1 ]
Kunz, Paul D. [1 ]
Cox, Kevin C. [1 ]
机构
[1] CCDC Us Army Res Lab, Adelphi, MD 20783 USA
关键词
VAPOR CELL; ATOM;
D O I
10.1103/PhysRevApplied.15.014053
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate an atomic rf receiver and spectrum analyzer based on thermal Rydberg atoms coupled to a planar microwave waveguide. We use an off-resonant rf heterodyne technique to achieve continuous operation for carrier frequencies ranging from dc to 20 GHz. The system achieves an intrinsic sensitivity of up to -120(2) dBm/Hz, dc coupling, 4-MHz instantaneous bandwidth, and over 80 dB of linear dynamic range. By connecting through a low-noise preamplifier, we demonstrate high-performance spectrum analysis with peak sensitivity of better than -145 dBm/Hz. Attaching a standard rabbit-ears antenna, the spectrum analyzer detects weak ambient signals including FM radio, AM radio, WiFi, and bluetooth. We also demonstrate waveguide-readout of the thermal Rydberg ensemble by nondestructively probing waveguide-atom interactions. The system opens the door for small, room-temperature, ensemble-based Rydberg sensors that surpass the sensitivity, bandwidth, and precision limitations of standard rf sensors, receivers, and analyzers.
引用
收藏
页数:10
相关论文
共 33 条
[31]   Embedding a Rydberg Atom-Based Sensor Into an Antenna for Phase and Amplitude Detection of Radio-Frequency Fields and Modulated Signals [J].
Simons, Matthew T. ;
Haddab, Abdulaziz H. ;
Gordon, Joshua A. ;
Novotny, David ;
Holloway, Christopher L. .
IEEE ACCESS, 2019, 7 :164975-164985
[32]   Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators [J].
Soltani, Mohammad ;
Zhang, Mian ;
Ryan, Colm ;
Ribeill, Guilhem J. ;
Wang, Cheng ;
Loncar, Marko .
PHYSICAL REVIEW A, 2017, 96 (04)
[33]   A tunable high-Q millimeter wave cavity for hybrid circuit and cavity QED experiments [J].
Suleymanzade, Aziza ;
Anferov, Alexander ;
Stone, Mark ;
Naik, Ravi K. ;
Oriani, Andrew ;
Simon, Jonathan ;
Schuster, David .
APPLIED PHYSICS LETTERS, 2020, 116 (10)