We study the global well-posedness of the Lagrangian averaged Euler equations in three dimensions. We show that a necessary and sufficient condition for the global existence is that the bounded mean oscillation of the stream function is integrable in time. We also derive a sufficient condition in terms of the total variation of certain level set functions, which guarantees the global existence. Furthermore, we obtain the global existence of the averaged two-dimensional (2D) Boussinesq equations and the Lagrangian averaged 2D quasi-geostrophic equations infinite Sobolev space in the absence of viscosity or dissipation.
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
Pu, Xueke
Zhou, Wenli
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China