Accurate brain age prediction with lightweight deep neural networks

被引:272
作者
Peng, Han [1 ,2 ,3 ]
Gong, Weikang [1 ]
Beckmann, Christian F. [1 ,3 ]
Vedaldi, Andrea [2 ]
Smith, Stephen M. [1 ]
机构
[1] Univ Oxford, Wellcome Ctr Integrat Neuroimaging WIN FMRIB, Oxford OX3 9DU, England
[2] Univ Oxford, Visual Geometry Grp VGG, Oxford OX2 6NN, England
[3] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6525 EN Nijmegen, Netherlands
基金
英国惠康基金; 欧盟地平线“2020”; 英国医学研究理事会;
关键词
Neuroimaging; Brain age prediction; Predictive analysis; Convolutional neural networks; PATTERNS; DISEASE;
D O I
10.1016/j.media.2020.101871
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning has huge potential for accurate disease prediction with neuroimaging data, but the prediction performance is often limited by training-dataset size and computing memory requirements. To address this, we propose a deep convolutional neural network model, Simple Fully Convolutional Network (SFCN), for accurate prediction of brain age using Tl-weighted structural MRI data. Compared with other popular deep network architectures, SFCN has fewer parameters, so is more compatible with small dataset size and 3D volume data. The network architecture was combined with several techniques for boosting performance, including data augmentation, pre-training, model regularization, model ensemble and prediction bias correction. We compared our overall SFCN approach with several widely-used machine learning models. It achieved state-of-the-art performance in UK Biobank data (N = 14,503), with mean absolute error (MAE) = 2.14y in brain age prediction and 99.5% in sex classification. SFCN also won (both parts of) the 2019 Predictive Analysis Challenge for brain age prediction, involving 79 competing teams (N = 2,638, MAE = 2.90y). We describe here the details of our approach, and its optimisation and validation. Our approach can easily be generalised to other tasks using different image modalities, and is released on GitHub. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank [J].
Alfaro-Almagro, Fidel ;
Jenkinson, Mark ;
Bangerter, Neal K. ;
Andersson, Jesper L. R. ;
Griffanti, Ludovica ;
Douaud, Gwenaelle ;
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Hernandez-Fernandez, Moises ;
Vallee, Emmanuel ;
Vidaurre, Diego ;
Webster, Matthew ;
McCarthy, Paul ;
Rorden, Christopher ;
Daducci, Alessandro ;
Alexander, Daniel C. ;
Zhang, Hui ;
Dragonu, Iulius ;
Matthews, Paul M. ;
Miller, Karla L. ;
Smith, Stephen M. .
NEUROIMAGE, 2018, 166 :400-424
[2]  
Arslan S., 2018, GRAPHS BIOMEDICAL IM, P3
[3]   A fast diffeomorphic image registration algorithm [J].
Ashburner, John .
NEUROIMAGE, 2007, 38 (01) :95-113
[4]   MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide [J].
Bashyam, Vishnu M. ;
Erus, Guray ;
Doshi, Jimit ;
Habes, Mohamad ;
Nasralah, Ilya ;
Truelove-Hill, Monica ;
Srinivasan, Dhivya ;
Mamourian, Liz ;
Pomponio, Raymond ;
Fan, Yong ;
Launer, Lenore J. ;
Masters, Colin L. ;
Maruff, Paul ;
Zhuo, Chuanjun ;
Volzke, Henry ;
Johnson, Sterling C. ;
Fripp, Jurgen ;
Koutsouleris, Nikolaos ;
Satterthwaite, Theodore D. ;
Wolf, Daniel ;
Gur, Raquel E. ;
Gur, Ruben C. ;
Morris, John ;
Albert, Marilyn S. ;
Grabe, Hans J. ;
Resnick, Susan ;
Bryan, R. Nick ;
Wolk, David A. ;
Shou, Haochang ;
Davatzikos, Christos .
BRAIN, 2020, 143 :2312-2324
[5]   Visual Feature Attribution using Wasserstein GANs [J].
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Tezcan, Kerem Can ;
Ang, Jia Xi ;
Konukoglu, Ender .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8309-8319
[6]   Neuroanatomical Assessment of Biological Maturity [J].
Brown, Timothy T. ;
Kuperman, Joshua M. ;
Chung, Yoonho ;
Erhart, Matthew ;
McCabe, Connor ;
Hagler, Donald J., Jr. ;
Venkatraman, Vijay K. ;
Akshoomoff, Natacha ;
Amaral, David G. ;
Bloss, Cinnamon S. ;
Casey, B. J. ;
Chang, Linda ;
Ernst, Thomas M. ;
Frazier, Jean A. ;
Gruen, Jeffrey R. ;
Kaufmann, Walter E. ;
Kenet, Tal ;
Kennedy, David N. ;
Murray, Sarah S. ;
Sowell, Elizabeth R. ;
Jernigan, Terry L. ;
Dale, Anders M. .
CURRENT BIOLOGY, 2012, 22 (18) :1693-1698
[7]   A Partially Reversible U-Net for Memory-Efficient Volumetric Image Segmentation [J].
Brugger, Robin ;
Baumgartner, Christian F. ;
Konukoglu, Ender .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 :429-437
[8]  
Bulat A., 2019, ARXIV PREPRINT ARXIV
[9]   Patterns in the human brain mosaic discriminate males from females [J].
Chekroud, Adam M. ;
Ward, Emily J. ;
Rosenberg, Monica D. ;
Holmes, Avram J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (14) :E1968-E1968
[10]   Brain age predicts mortality [J].
Cole, J. H. ;
Ritchie, S. J. ;
Bastin, M. E. ;
Hernandez, M. C. Valdes ;
Maniega, S. Munoz ;
Royle, N. ;
Corley, J. ;
Pattie, A. ;
Harris, S. E. ;
Zhang, Q. ;
Wray, N. R. ;
Redmond, P. ;
Marioni, R. E. ;
Starr, J. M. ;
Cox, S. R. ;
Wardlaw, J. M. ;
Sharp, D. J. ;
Deary, I. J. .
MOLECULAR PSYCHIATRY, 2018, 23 (05) :1385-1392