Lipschitz continuity for energy integrals with variable exponents

被引:50
作者
Eleuteri, Michela [1 ]
Marcellini, Paolo [1 ]
Mascolo, Elvira [1 ]
机构
[1] Univ Florence, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Energy integrals; local minimizers; local Lipschitz continuity; p(x)-growth; variable exponents; ELLIPTIC-EQUATIONS; HOLDER CONTINUITY; REGULARITY; FUNCTIONALS; MINIMIZERS; CALCULUS; GRADIENT;
D O I
10.4171/RLM/723
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A regularity result for integrals of the Calculus of Variations with variable exponents is presented. Precisely, we prove that any vector-valued minimizer of an energy integral over an open set Omega subset of R-n, with variable exponent p(x) in the Sobolev class W-loc(1, r)(Omega) for some r > n, is locally Lipschitz continuous in Omega and an a priori estimate holds.
引用
收藏
页码:61 / 87
页数:27
相关论文
共 36 条
[1]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[2]  
[Anonymous], 1968, Boll. Unione Mat. Ital.
[3]  
[Anonymous], 2012, Homogenization of differential operators and integral functionals
[4]  
[Anonymous], ASYMPTOTIC IN PRESS
[5]  
[Anonymous], 1990, Hokkaido Math. J.
[6]  
[Anonymous], 1998, Rend. Mat. Appl.
[7]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[8]  
[Anonymous], 2006, Applications of mathematics, DOI DOI 10.1007/S10778-006-0110-3
[9]  
[Anonymous], ANN MAT PURA APPL
[10]  
[Anonymous], PREPRINT