Pattern formation in a spatial plant-wrack model with tide effect on the wrack

被引:9
作者
Sun, Gui-Quan [1 ,2 ,3 ]
Li, Li [1 ]
Jin, Zhen [1 ]
Li, Bai-Lian [3 ]
机构
[1] N Univ China, Dept Math, Taiyuan 030051, Shanxi, Peoples R China
[2] N Univ China, Sch Mechatron Engn, Taiyuan 030051, Shanxi, Peoples R China
[3] Univ Calif Riverside, Dept Bot & Plant Sci, Ecol Complex & Modeling Lab, Riverside, CA 92521 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Carex stricta; Pattern formation; Tide; REACTION-DIFFUSION SYSTEM; SELF-ORGANIZATION; CATASTROPHIC SHIFTS; MARGINAL STABILITY; FRONT PROPAGATION; UNSTABLE STATES; CROSS-DIFFUSION; VEGETATION; SCALE; ECOSYSTEMS;
D O I
10.1007/s10867-009-9165-9
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Spatial patterns are a subfield of spatial ecology, and these patterns modify the temporal dynamics and stability properties of population densities at a range of spatial scales. Localized ecological interactions can generate striking large-scale spatial patterns in ecosystems through spatial self-organization. Possible mechanisms include oscillating consumer-resource interactions, localized disturbance-recovery processes, and scale-dependent feedback. However, in this paper, our main aim is to study the effect of tide on the pattern formation of a spatial plant-wrack model. We discuss the changes of the wavelength, wave speed, and the conditions of the spatial pattern formation, according to the dispersion relation formula. Both the mathematical analysis and numerical simulations reveal that the tide has great influence on the spatial pattern. More specifically, typical traveling spatial patterns can be obtained. Our obtained results are consistent with the previous observation that wracks exhibit traveling patterns, which is useful to help us better understand the dynamics of the real ecosystems.
引用
收藏
页码:161 / 174
页数:14
相关论文
共 61 条
[1]   Enhanced nitrogen loss may explain alternative stable states in dune slack succession [J].
Adema, EB ;
Van de Koppel, J ;
Meijer, HAJ ;
Grootjans, AP .
OIKOS, 2005, 109 (02) :374-386
[2]   Do vegetation patch spatial patterns disrupt the spatial organization of plant species? [J].
Alados, C. L. ;
Navarro, T. ;
Komac, B. ;
Pascual, V. ;
Martinez, F. ;
Cabezudo, B. ;
Pueyo, Y. .
ECOLOGICAL COMPLEXITY, 2009, 6 (02) :197-207
[3]   Stationary space-periodic structures with equal diffusion coefficients [J].
Andresén, P ;
Bache, M ;
Mosekilde, E ;
Dewel, G ;
Borckmans, P .
PHYSICAL REVIEW E, 1999, 60 (01) :297-301
[4]  
APFEELBAUM SI, 1989, RESTOR MANAGE NOTES, V7, P38
[5]   Shoreline vegetation distribution in relation to wave exposure and bay characteristics in a tropical great lake, Lake Victoria [J].
Azza, Nicholas ;
van de Koppel, Johan ;
Denny, Patrick ;
Kansiime, Frank .
JOURNAL OF TROPICAL ECOLOGY, 2007, 23 :353-360
[6]   Floating mats: their occurrence and influence on shoreline distribution of emergent vegetation [J].
Azza, Nicholas ;
Denny, Patrick ;
van de Koppel, Johan ;
Kansiime, Frank .
FRESHWATER BIOLOGY, 2006, 51 (07) :1286-1297
[7]  
Bers A., 1983, HDB PLASMA PHYS, V1
[8]   Dark-bellied Brent geese aggregate to cope with increased levels of primary production [J].
Bos, D ;
van de Koppel, J ;
Weissing, FJ .
OIKOS, 2004, 107 (03) :485-496
[9]   Trade-offs related to ecosystem engineering:: A case study on stiffness of emerging macrophytes [J].
Bouma, TJ ;
De Vries, MB ;
Low, E ;
Peralta, G ;
Tánczos, C ;
Van de Koppel, J ;
Herman, PMJ .
ECOLOGY, 2005, 86 (08) :2187-2199
[10]  
Briggs R., 1964, Electron-Stream Interaction with Plasmas